Cellular and Molecular Life Sciences

, Volume 66, Issue 15, pp 2405–2426 | Cite as

Estrogen and progesterone receptors: from molecular structures to clinical targets

  • Stephan Ellmann
  • Heinrich Sticht
  • Falk Thiel
  • Matthias W. Beckmann
  • Reiner Strick
  • Pamela L. Strissel
Review

Abstract

Research involving estrogen and progesterone receptors (ER and PR) have greatly contributed to our understanding of cell signaling and transcriptional regulation. In addition to the classical ER and PR nuclear actions, new signaling pathways have recently been identified due to ER and PR association with cell membranes and signal transduction proteins. Bio-informatics has unveiled how ER and PR recognize their ligands, selective modulators and co-factors, which has helped to implement them as key targets in the treatment of benign and malignant tumors. Knowledge regarding ER and PR is vast and complex; therefore, this review will focus on their isoforms, signaling pathways, co-activators and co-repressors, which lead to target gene regulation. Moreover it will highlight ER and PR involvement in benign and malignant diseases as well as pharmacological substances influencing cell signaling and provide established and new structural insights into the mechanism of activation and inhibition of these receptors.

Keywords

Estrogen and progesterone receptors SERMs and tamoxifen Crystal structures Breast and endometrial carcinoma 

Notes

Acknowledgments

Our research was supported in part by the Interdisciplinary Centre for Clinical Research (IZKF) at the University Hospital of the University of Erlangen-Nuremberg to P.L.S. and R.S. and from the Deutsche Krebshilfe to R.S. Thanks to Anselm Horn (Institute of Bioinformatics) for help with Fig. 6.

References

  1. 1.
    Tremblay AM, Giguere V (2007) The NR3B subgroup: an overrview. Nucl Recept Signal 5:e009PubMedGoogle Scholar
  2. 2.
    Gangloff M, Ruff M, Eiler S, Duclaud S, Wurtz JM, Moras D (2001) Crystal structure of a mutant hERalpha ligand-binding domain reveals key structural features for the mechanism of partial agonism. J Biol Chem 276:15059–15065PubMedCrossRefGoogle Scholar
  3. 3.
    Williams SP, Sigler PB (1998) Atomic structure of progesterone complexed with its receptor. Nature 393:392–396PubMedCrossRefGoogle Scholar
  4. 4.
    Gille C, Frommel C (2001) STRAP: editor for structural alignments of proteins. Bioinformatics 17:377–378PubMedCrossRefGoogle Scholar
  5. 5.
    DeLano WL (2008) The PyMOL Molecular Graphics System. Palo Alto, CAGoogle Scholar
  6. 6.
    Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J (1986) Sequence and expression of human estrogen receptor complementary DNA. Science 231:1150–1154PubMedCrossRefGoogle Scholar
  7. 7.
    Gosden JR, Middleton PG, Rout D (1986) Localization of the human oestrogen receptor gene to chromosome 6q24–q27 by in situ hybridization. Cytogenet Cell Genet 43:218–220PubMedCrossRefGoogle Scholar
  8. 8.
    Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O (1993) Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci USA 90:11162–11166PubMedCrossRefGoogle Scholar
  9. 9.
    Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93:5925–5930PubMedCrossRefGoogle Scholar
  10. 10.
    Enmark E, Pelto-Huikko M, Grandien K, Lagercrantz S, Lagercrantz J, Fried G, Nordenskjold M, Gustafsson JA (1997) Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab 82:4258–4265PubMedCrossRefGoogle Scholar
  11. 11.
    Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF, Sar M, Korach KS, Gustafsson JA, Smithies O (1998) Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci USA 95:15677–15682PubMedCrossRefGoogle Scholar
  12. 12.
    Ward HW (1973) Anti-oestrogen therapy for breast cancer: a trial of tamoxifen at two dose levels. Br Med J 1:13–14PubMedCrossRefGoogle Scholar
  13. 13.
    Riggs BL, Hartmann LC (2003) Selective estrogen-receptor modulators–mechanisms of action and application to clinical practice. N Engl J Med 348:618–629PubMedCrossRefGoogle Scholar
  14. 14.
    Nordman IC, Dalley DN (2008) Breast cancer in men: should aromatase inhibitors become first-line hormonal treatment? Breast J 14:562–569PubMedCrossRefGoogle Scholar
  15. 15.
    Jordan VC (2007) Chemoprevention of breast cancer with selective oestrogen-receptor modulators. Nat Rev Cancer 7:46–53PubMedCrossRefGoogle Scholar
  16. 16.
    Flototto T, Djahansouzi S, Glaser M, Hanstein B, Niederacher D, Brumm C, Beckmann MW (2001) Hormones and hormone antagonists: mechanisms of action in carcinogenesis of endometrial and breast cancer. Horm Metab Res 33:451–457PubMedCrossRefGoogle Scholar
  17. 17.
    Deligdisch L, Kalir T, Cohen CJ, de Latour M, Le Bouedec G, Penault-Llorca F (2000) Endometrial histopathology in 700 patients treated with tamoxifen for breast cancer. Gynecol Oncol 78:181–186PubMedCrossRefGoogle Scholar
  18. 18.
    Sherman MR, Corvol PL, O’Malley BW (1970) Progesterone-binding components of chick oviduct I. Preliminary characterization of cytoplasmic components. J Biol Chem 245:6085–6096PubMedGoogle Scholar
  19. 19.
    Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr, Shyamala G, Conneely OM, O’Malley BW (1995) Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 9:2266–2278PubMedCrossRefGoogle Scholar
  20. 20.
    Philibert D, Deraedt R and Teutsch G (1981) RU 38486: a potent antiglucocorticoid in vivo. In: Proceedings of the VII International Congress of Pharmacology, Tokyo, JapanGoogle Scholar
  21. 21.
    Leonhardt SA, Boonyaratanakornkit V, Edwards DP (2003) Progesterone receptor transcription and non-transcription signaling mechanisms. Steroids 68:761–770PubMedCrossRefGoogle Scholar
  22. 22.
    Murphy AA, Kettel LM, Morales AJ, Roberts VJ, Yen SS (1993) Regression of uterine leiomyomata in response to the antiprogesterone RU 486. J Clin Endocrinol Metab 76:513–517PubMedCrossRefGoogle Scholar
  23. 23.
    Giudice LC, Kao LC (2004) Endometriosis. Lancet 364:1789–1799PubMedCrossRefGoogle Scholar
  24. 24.
    Kettel LM, Murphy AA, Morales AJ, Yen SS (1998) Preliminary report on the treatment of endometriosis with low-dose mifepristone (RU 486). Am J Obstet Gynecol 178:1151–1156PubMedCrossRefGoogle Scholar
  25. 25.
    Nilsson S, Makela S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA (2001) Mechanisms of estrogen action. Physiol Rev 81:1535–1565PubMedGoogle Scholar
  26. 26.
    Hall JM, McDonnell DP (1999) The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology 140:5566–5578PubMedCrossRefGoogle Scholar
  27. 27.
    Sartorius CA, Melville MY, Hovland AR, Tung L, Takimoto GS, Horwitz KB (1994) A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform. Mol Endocrinol 8:1347–1360PubMedCrossRefGoogle Scholar
  28. 28.
    Roemer SC, Donham DC, Sherman L, Pon VH, Edwards DP, Churchill ME (2006) Structure of the progesterone receptor-deoxyribonucleic acid complex: novel interactions required for binding to half-site response elements. Mol Endocrinol 20:3042–3052PubMedCrossRefGoogle Scholar
  29. 29.
    Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT (2007) Nuclear receptor structure: implications for function. Annu Rev Physiol 69:201–220PubMedCrossRefGoogle Scholar
  30. 30.
    Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29:2905–2919PubMedCrossRefGoogle Scholar
  31. 31.
    Skafar DF, Koide S (2006) Understanding the human estrogen receptor-alpha using targeted mutagenesis. Mol Cell Endocrinol 246:83–90PubMedCrossRefGoogle Scholar
  32. 32.
    Yang J, Singleton DW, Shaughnessy EA, Khan SA (2008) The F-domain of estrogen receptor-alpha inhibits ligand induced receptor dimerization. Mol Cell Endocrinol 295:94–100PubMedCrossRefGoogle Scholar
  33. 33.
    Bolger R, Wiese TE, Ervin K, Nestich S, Checovich W (1998) Rapid screening of environmental chemicals for estrogen receptor binding capacity. Environ Health Perspect 106:551–557PubMedCrossRefGoogle Scholar
  34. 34.
    Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937PubMedCrossRefGoogle Scholar
  35. 35.
    Norman AW, Mizwicki MT, Norman DP (2004) Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov 3:27–41PubMedCrossRefGoogle Scholar
  36. 36.
    Pike AC, Brzozowski AM, Hubbard RE (2000) A structural biologist’s view of the oestrogen receptor. J Steroid Biochem Mol Biol 74:261–268PubMedCrossRefGoogle Scholar
  37. 37.
    Tzukerman MT, Esty A, Santiso-Mere D, Danielian P, Parker MG, Stein RB, Pike JW, McDonnell DP (1994) Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol 8:21–30PubMedCrossRefGoogle Scholar
  38. 38.
    Tanenbaum DM, Wang Y, Williams SP, Sigler PB (1998) Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc Natl Acad Sci USA 95:5998–6003PubMedCrossRefGoogle Scholar
  39. 39.
    Hirata S, Shoda T, Kato J, Hoshi K (2003) Isoform/variant mRNAs for sex steroid hormone receptors in humans. Trends Endocrinol Metab 14:124–129PubMedCrossRefGoogle Scholar
  40. 40.
    Flouriot G, Brand H, Denger S, Metivier R, Kos M, Reid G, Sonntag-Buck V, Gannon F (2000) Identification of a new isoform of the human estrogen receptor-alpha (hER-alpha) that is encoded by distinct transcripts and that is able to repress hER-alpha activation function 1. EMBO J 19:4688–4700PubMedCrossRefGoogle Scholar
  41. 41.
    Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, Deuel TF (2005) Identification, cloning, and expression of human estrogen receptor-alpha36, a novel variant of human estrogen receptor-alpha66. Biochem Biophys Res Commun 336:1023–1027PubMedCrossRefGoogle Scholar
  42. 42.
    Penot G, Le Peron C, Merot Y, Grimaud-Fanouillere E, Ferriere F, Boujrad N, Kah O, Saligaut C, Ducouret B, Metivier R, Flouriot G (2005) The human estrogen receptor-alpha isoform hERalpha46 antagonizes the proliferative influence of hERalpha66 in MCF7 breast cancer cells. Endocrinology 146:5474–5484PubMedCrossRefGoogle Scholar
  43. 43.
    Zhao C, Matthews J, Tujague M, Wan J, Strom A, Toresson G, Lam EW, Cheng G, Gustafsson JA, Dahlman-Wright K (2007) Estrogen receptor beta2 negatively regulates the transactivation of estrogen receptor alpha in human breast cancer cells. Cancer Res 67:3955–3962PubMedCrossRefGoogle Scholar
  44. 44.
    Bardin A, Boulle N, Lazennec G, Vignon F, Pujol P (2004) Loss of ERbeta expression as a common step in estrogen-dependent tumor progression. Endocr Relat Cancer 11:537–551PubMedCrossRefGoogle Scholar
  45. 45.
    Batistatou A, Kyzas PA, Goussia A, Arkoumani E, Voulgaris S, Polyzoidis K, Agnantis NJ, Stefanou D (2006) Estrogen receptor beta (ERbeta) protein expression correlates with BAG-1 and prognosis in brain glial tumours. J Neurooncol 77:17–23PubMedCrossRefGoogle Scholar
  46. 46.
    Roger P, Sahla ME, Makela S, Gustafsson JA, Baldet P, Rochefort H (2001) Decreased expression of estrogen receptor beta protein in proliferative preinvasive mammary tumors. Cancer Res 61:2537–2541PubMedGoogle Scholar
  47. 47.
    Shaaban AM, O’Neill PA, Davies MP, Sibson R, West CR, Smith PH, Foster CS (2003) Declining estrogen receptor-beta expression defines malignant progression of human breast neoplasia. Am J Surg Pathol 27:1502–1512PubMedCrossRefGoogle Scholar
  48. 48.
    Staibano S, Franco R, Mezza E, Chieffi P, Sinisi A, Pasquali D, Errico ME, Nappi C, Tremolaterra F, Somma P, Mansueto G, De Rosa G (2003) Loss of oestrogen receptor beta, high PCNA and p53 expression and aneuploidy as markers of worse prognosis in ovarian granulosa cell tumours. Histopathology 43:254–262PubMedCrossRefGoogle Scholar
  49. 49.
    Chu MC, Mor G, Lim C, Zheng W, Parkash V, Schwartz PE (2003) Low-grade endometrial stromal sarcoma: hormonal aspects. Gynecol Oncol 90:170–176PubMedCrossRefGoogle Scholar
  50. 50.
    Wang H, Wu X, Englund K, Masironi B, Eriksson H, Sahlin L (2001) Different expression of estrogen receptors alpha and beta in human myometrium and leiomyoma during the proliferative phase of the menstrual cycle and after GnRHa treatment. Gynecol Endocrinol 15:443–452PubMedCrossRefGoogle Scholar
  51. 51.
    Fuller PJ, Chu S, Fikret S, Burger HG (2002) Molecular pathogenesis of granulosa cell tumours. Mol Cell Endocrinol 191:89–96PubMedCrossRefGoogle Scholar
  52. 52.
    O’Brien ML, Park K, In Y, Park-Sarge OK (1999) Characterization of estrogen receptor-beta (ERbeta) messenger ribonucleic acid and protein expression in rat granulosa cells. Endocrinology 140:4530–4541PubMedCrossRefGoogle Scholar
  53. 53.
    Pelletier G, El-Alfy M (2000) Immunocytochemical localization of estrogen receptors alpha and beta in the human reproductive organs. J Clin Endocrinol Metab 85:4835–4840PubMedCrossRefGoogle Scholar
  54. 54.
    Wu CT, Chang YL, Shih JY, Lee YC (2005) The significance of estrogen receptor beta in 301 surgically treated non-small cell lung cancers. J Thorac Cardiovasc Surg 130:979–986PubMedCrossRefGoogle Scholar
  55. 55.
    Kovacs KA, Oszter A, Gocze PM, Kornyei JL, Szabo I (2001) Comparative analysis of cyclin D1 and oestrogen receptor (alpha and beta) levels in human leiomyoma and adjacent myometrium. Mol Hum Reprod 7:1085–1091PubMedCrossRefGoogle Scholar
  56. 56.
    Strissel PL, Swiatek J, Oppelt P, Renner SP, Beckmann MW, Strick R (2007) Transcriptional analysis of steroid hormone receptors in smooth muscle uterine leiomyoma tumors of postmenopausal patients. J Steroid Biochem Mol Biol 107:42–47PubMedCrossRefGoogle Scholar
  57. 57.
    Strissel PL, Ellmann S, Loprich E, Thiel F, Fasching PA, Stiegler E, Hartmann A, Beckmann MW, Strick R (2008) Early aberrant insulin-like growth factor signaling in the progression to endometrial carcinoma is augmented by tamoxifen. Int J Cancer 123:2871–2879PubMedCrossRefGoogle Scholar
  58. 58.
    De Vivo I, Huggins GS, Hankinson SE, Lescault PJ, Boezen M, Colditz GA, Hunter DJ (2002) A functional polymorphism in the promoter of the progesterone receptor gene associated with endometrial cancer risk. Proc Natl Acad Sci USA 99:12263–12268PubMedCrossRefGoogle Scholar
  59. 59.
    Li H, Fidler ML, Lim CS (2005) Effect of initial subcellular localization of progesterone receptor on import kinetics and transcriptional activity. Mol Pharm 2:509–518PubMedCrossRefGoogle Scholar
  60. 60.
    Giangrande PH, Pollio G, McDonnell DP (1997) Mapping and characterization of the functional domains responsible for the differential activity of the A and B isoforms of the human progesterone receptor. J Biol Chem 272:32889–32900PubMedCrossRefGoogle Scholar
  61. 61.
    Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, Chambon P (1990) Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J 9:1603–1614PubMedGoogle Scholar
  62. 62.
    Berchuck A, Schildkraut JM, Wenham RM, Calingaert B, Ali S, Henriott A, Halabi S, Rodriguez GC, Gertig D, Purdie DM, Kelemen L, Spurdle AB, Marks J, Chenevix-Trench G (2004) Progesterone receptor promoter +331A polymorphism is associated with a reduced risk of endometrioid and clear cell ovarian cancers. Cancer Epidemiol Biomarkers Prev 13:2141–2147PubMedGoogle Scholar
  63. 63.
    Cramer DW, Hornstein MD, McShane P, Powers RD, Lescault PJ, Vitonis AF, De Vivo I (2003) Human progesterone receptor polymorphisms and implantation failure during in vitro fertilization. Am J Obstet Gynecol 189:1085–1092PubMedCrossRefGoogle Scholar
  64. 64.
    Dossus L, Canzian F, Kaaks R, Boumertit A, Weiderpass E (2006) No association between progesterone receptor gene +331G/A polymorphism and endometrial cancer. Cancer Epidemiol Biomarkers Prev 15:1415–1416PubMedCrossRefGoogle Scholar
  65. 65.
    Feigelson HS, Rodriguez C, Jacobs EJ, Diver WR, Thun MJ, Calle EE (2004) No association between the progesterone receptor gene +331G/A polymorphism and breast cancer. Cancer Epidemiol Biomarkers Prev 13:1084–1085PubMedCrossRefGoogle Scholar
  66. 66.
    McGowan EM, Clarke CL (1999) Effect of overexpression of progesterone receptor A on endogenous progestin-sensitive endpoints in breast cancer cells. Mol Endocrinol 13:1657–1671PubMedCrossRefGoogle Scholar
  67. 67.
    Risch HA, Bale AE, Beck PA, Zheng W (2006) PGR +331 A/G and increased risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 15:1738–1741PubMedCrossRefGoogle Scholar
  68. 68.
    Romano A, Lindsey PJ, Fischer DC, Delvoux B, Paulussen AD, Janssen RG, Kieback DG (2006) Two functionally relevant polymorphisms in the human progesterone receptor gene (+331 G/A and progins) and the predisposition for breast and/or ovarian cancer. Gynecol Oncol 101:287–295PubMedCrossRefGoogle Scholar
  69. 69.
    van Kaam KJ, Romano A, Schouten JP, Dunselman GA, Groothuis PG (2007) Progesterone receptor polymorphism +331G/A is associated with a decreased risk of deep infiltrating endometriosis. Hum Reprod 22:129–135PubMedCrossRefGoogle Scholar
  70. 70.
    Mulac-Jericevic B, Mullinax RA, DeMayo FJ, Lydon JP, Conneely OM (2000) Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science 289:1751–1754PubMedCrossRefGoogle Scholar
  71. 71.
    Conneely OM, Mulac-Jericevic B, DeMayo F, Lydon JP, O’Malley BW (2002) Reproductive functions of progesterone receptors. Recent Prog Horm Res 57:339–355PubMedCrossRefGoogle Scholar
  72. 72.
    Couse JF, Korach KS (1999) Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev 20:358–417PubMedCrossRefGoogle Scholar
  73. 73.
    Graham JD, Clarke CL (2002) Expression and transcriptional activity of progesterone receptor A and progesterone receptor B in mammalian cells. Breast Cancer Res 4:187–190PubMedCrossRefGoogle Scholar
  74. 74.
    Lonard DM, O’Malley BW (2007) Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell 27:691–700PubMedCrossRefGoogle Scholar
  75. 75.
    Dobrzycka KM, Townson SM, Jiang S, Oesterreich S (2003) Estrogen receptor corepressors–a role in human breast cancer? Endocr Relat Cancer 10:517–536PubMedCrossRefGoogle Scholar
  76. 76.
    Ikeda M, Kawaguchi A, Takeshita A, Chin WW, Endo T, Onaya T (1999) CBP-dependent and independent enhancing activity of steroid receptor coactivator-1 in thyroid hormone receptor-mediated transactivation. Mol Cell Endocrinol 147:103–112PubMedCrossRefGoogle Scholar
  77. 77.
    Kalkhoven E, Valentine JE, Heery DM, Parker MG (1998) Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J 17:232–243PubMedCrossRefGoogle Scholar
  78. 78.
    Wei X, Xu H, Kufe D (2006) MUC1 oncoprotein stabilizes and activates estrogen receptor alpha. Mol Cell 21:295–305PubMedCrossRefGoogle Scholar
  79. 79.
    Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277:965–968PubMedCrossRefGoogle Scholar
  80. 80.
    McKenna NJ, Lanz RB, O’Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20:321–344PubMedCrossRefGoogle Scholar
  81. 81.
    Yao TP, Ku G, Zhou N, Scully R, Livingston DM (1996) The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc Natl Acad Sci USA 93:10626–10631PubMedCrossRefGoogle Scholar
  82. 82.
    Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959PubMedCrossRefGoogle Scholar
  83. 83.
    Ding XF, Anderson CM, Ma H, Hong H, Uht RM, Kushner PJ, Stallcup MR (1998) Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): multiple motifs with different binding specificities. Mol Endocrinol 12:302–313PubMedCrossRefGoogle Scholar
  84. 84.
    Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736PubMedCrossRefGoogle Scholar
  85. 85.
    Vadlamudi RK, Wang RA, Mazumdar A, Kim Y, Shin J, Sahin A, Kumar R (2001) Molecular cloning and characterization of PELP1, a novel human coregulator of estrogen receptor alpha. J Biol Chem 276:38272–38279PubMedGoogle Scholar
  86. 86.
    Balasenthil S, Vadlamudi RK (2003) Functional interactions between the estrogen receptor coactivator PELP1/MNAR and retinoblastoma protein. J Biol Chem 278:22119–22127PubMedCrossRefGoogle Scholar
  87. 87.
    Nair SS, Mishra SK, Yang Z, Balasenthil S, Kumar R, Vadlamudi RK (2004) Potential role of a novel transcriptional coactivator PELP1 in histone H1 displacement in cancer cells. Cancer Res 64:6416–6423PubMedCrossRefGoogle Scholar
  88. 88.
    Rachez C, Lemon BD, Suldan Z, Bromleigh V, Gamble M, Naar AM, Erdjument-Bromage H, Tempst P, Freedman LP (1999) Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398:824–828PubMedCrossRefGoogle Scholar
  89. 89.
    Cottone E, Orso F, Biglia N, Sismondi P, De Bortoli M (2001) Role of coactivators and corepressors in steroid and nuclear receptor signaling: potential markers of tumor growth and drug sensitivity. Int J Biol Markers 16:151–166PubMedGoogle Scholar
  90. 90.
    Shang Y, Brown M (2002) Molecular determinants for the tissue specificity of SERMs. Science 295:2465–2468PubMedCrossRefGoogle Scholar
  91. 91.
    Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Strom A, Treuter E, Warner M, Gustafsson JA (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87:905–931PubMedCrossRefGoogle Scholar
  92. 92.
    Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL, Evans RM (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380PubMedCrossRefGoogle Scholar
  93. 93.
    Edwards DP (2000) The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors. J Mammary Gland Biol Neoplasia 5:307–324PubMedCrossRefGoogle Scholar
  94. 94.
    Chambraud B, Berry M, Redeuilh G, Chambon P, Baulieu EE (1990) Several regions of human estrogen receptor are involved in the formation of receptor-heat shock protein 90 complexes. J Biol Chem 265:20686–20691PubMedGoogle Scholar
  95. 95.
    Redeuilh G, Moncharmont B, Secco C, Baulieu EE (1987) Subunit composition of the molybdate-stabilized “8–9 S” nontransformed estradiol receptor purified from calf uterus. J Biol Chem 262:6969–6975PubMedGoogle Scholar
  96. 96.
    Zhang Z, Kumar R, Santen RJ, Song RX (2004) The role of adapter protein Shc in estrogen non-genomic action. Steroids 69:523–529PubMedCrossRefGoogle Scholar
  97. 97.
    Kumar P, Wu Q, Chambliss KL, Yuhanna IS, Mumby SM, Mineo C, Tall GG, Shaul PW (2007) Direct Interactions with G alpha i and G betagamma mediate nongenomic signaling by estrogen receptor alpha. Mol Endocrinol 21:1370–1380PubMedCrossRefGoogle Scholar
  98. 98.
    Hammes A, Andreassen TK, Spoelgen R, Raila J, Hubner N, Schulz H, Metzger J, Schweigert FJ, Luppa PB, Nykjaer A, Willnow TE (2005) Role of endocytosis in cellular uptake of sex steroids. Cell 122:751–762PubMedCrossRefGoogle Scholar
  99. 99.
    Pedram A, Razandi M, Levin ER (2006) Nature of functional estrogen receptors at the plasma membrane. Mol Endocrinol 20:1996–2009PubMedCrossRefGoogle Scholar
  100. 100.
    Li L, Haynes MP, Bender JR (2003) Plasma membrane localization and function of the estrogen receptor alpha variant (ER46) in human endothelial cells. Proc Natl Acad Sci USA 100:4807–4812PubMedCrossRefGoogle Scholar
  101. 101.
    Doolan CM, Harvey BJ (2003) A Galphas protein-coupled membrane receptor, distinct from the classical oestrogen receptor, transduces rapid effects of oestradiol on [Ca2+]i in female rat distal colon. Mol Cell Endocrinol 199:87–103PubMedCrossRefGoogle Scholar
  102. 102.
    Song RX, Barnes CJ, Zhang Z, Bao Y, Kumar R, Santen RJ (2004) The role of Shc and insulin-like growth factor 1 receptor in mediating the translocation of estrogen receptor alpha to the plasma membrane. Proc Natl Acad Sci USA 101:2076–2081PubMedCrossRefGoogle Scholar
  103. 103.
    Chambliss KL, Yuhanna IS, Mineo C, Liu P, German Z, Sherman TS, Mendelsohn ME, Anderson RG, Shaul PW (2000) Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ Res 87:E44–E52PubMedGoogle Scholar
  104. 104.
    Acconcia F, Ascenzi P, Bocedi A, Spisni E, Tomasi V, Trentalance A, Visca P, Marino M (2005) Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell 16:231–237PubMedCrossRefGoogle Scholar
  105. 105.
    Filardo EJ, Quinn JA, Bland KI, Frackelton AR Jr (2000) Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 14:1649–1660PubMedCrossRefGoogle Scholar
  106. 106.
    Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER (2005) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307:1625–1630PubMedCrossRefGoogle Scholar
  107. 107.
    Prossnitz ER, Sklar LA, Oprea TI, Arterburn JB (2008) GPR30: a novel therapeutic target in estrogen-related disease. Trends Pharmacol Sci 29:116–123PubMedGoogle Scholar
  108. 108.
    Denton RR, Koszewski NJ, Notides AC (1992) Estrogen receptor phosphorylation. Hormonal dependence and consequence on specific DNA binding. J Biol Chem 267:7263–7268PubMedGoogle Scholar
  109. 109.
    Bunone G, Briand PA, Miksicek RJ, Picard D (1996) Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 15:2174–2183PubMedGoogle Scholar
  110. 110.
    Songyang Z, Lu KP, Kwon YT, Tsai LH, Filhol O, Cochet C, Brickey DA, Soderling TR, Bartleson C, Graves DJ, DeMaggio AJ, Hoekstra MF, Blenis J, Hunter T, Cantley LC (1996) A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol 16:6486–6493PubMedGoogle Scholar
  111. 111.
    Joel PB, Traish AM, Lannigan DA (1998) Estradiol-induced phosphorylation of serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase. J Biol Chem 273:13317–13323PubMedCrossRefGoogle Scholar
  112. 112.
    Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE, Thirunuvakkarasu V, Taylor J, Epstein RJ, Fuller-Pace FV, Egly JM, Coombes RC, Ali S (2002) Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene 21:4921–4931PubMedCrossRefGoogle Scholar
  113. 113.
    Lopez GN, Turck CW, Schaufele F, Stallcup MR, Kushner PJ (2001) Growth factors signal to steroid receptors through mitogen-activated protein kinase regulation of p160 coactivator activity. J Biol Chem 276:22177–22182PubMedCrossRefGoogle Scholar
  114. 114.
    Le Goff P, Montano MM, Schodin DJ, Katzenellenbogen BS (1994) Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem 269:4458–4466PubMedGoogle Scholar
  115. 115.
    Arnold SF, Obourn JD, Jaffe H, Notides AC (1995) Phosphorylation of the human estrogen receptor by mitogen-activated protein kinase and casein kinase II: consequence on DNA binding. J Steroid Biochem Mol Biol 55:163–172PubMedCrossRefGoogle Scholar
  116. 116.
    Joel PB, Smith J, Sturgill TW, Fisher TL, Blenis J, Lannigan DA (1998) pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol Cell Biol 18:1978–1984PubMedGoogle Scholar
  117. 117.
    Martin MB, Franke TF, Stoica GE, Chambon P, Katzenellenbogen BS, Stoica BA, McLemore MS, Olivo SE, Stoica A (2000) A role for Akt in mediating the estrogenic functions of epidermal growth factor and insulin-like growth factor I. Endocrinology 141:4503–4511PubMedCrossRefGoogle Scholar
  118. 118.
    Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL (2008) Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27:1919–1931PubMedCrossRefGoogle Scholar
  119. 119.
    Chow LM, Baker SJ (2006) PTEN function in normal and neoplastic growth. Cancer Lett 241:184–196PubMedCrossRefGoogle Scholar
  120. 120.
    Kurman RJ, Visvanathan K, Roden R, Wu TC, Shih I.e M (2008) Early detection and treatment of ovarian cancer: shifting from early stage to minimal volume of disease based on a new model of carcinogenesis. Am J Obstet Gynecol 198:351–356PubMedCrossRefGoogle Scholar
  121. 121.
    Ellenson LH, Wu TC (2004) Focus on endometrial and cervical cancer. Cancer Cell 5:533–538PubMedCrossRefGoogle Scholar
  122. 122.
    Strick R, Ackermann S, Langbein M, Swiatek J, Schubert SW, Hashemolhosseini S, Koscheck T, Fasching PA, Schild RL, Beckmann MW, Strissel PL (2007) Proliferation and cell-cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-beta. J Mol Med 85:23–38PubMedCrossRefGoogle Scholar
  123. 123.
    Chen D, Pace PE, Coombes RC, Ali S (1999) Phosphorylation of human estrogen receptor alpha by protein kinase A regulates dimerization. Mol Cell Biol 19:1002–1015PubMedGoogle Scholar
  124. 124.
    Aronica SM, Katzenellenbogen BS (1993) Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclic adenosine monophosphate, and insulin-like growth factor-I. Mol Endocrinol 7:743–752PubMedCrossRefGoogle Scholar
  125. 125.
    El-Tanani MK, Green CD (1997) Two separate mechanisms for ligand-independent activation of the estrogen receptor. Mol Endocrinol 11:928–937PubMedCrossRefGoogle Scholar
  126. 126.
    Rowan BG, Garrison N, Weigel NL, O’Malley BW (2000) 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol Cell Biol 20:8720–8730PubMedCrossRefGoogle Scholar
  127. 127.
    Schreihofer DA, Resnick EM, Lin VY, Shupnik MA (2001) Ligand-independent activation of pituitary ER: dependence on PKA-stimulated pathways. Endocrinology 142:3361–3368PubMedCrossRefGoogle Scholar
  128. 128.
    Zwart W, Griekspoor A, Berno V, Lakeman K, Jalink K, Mancini M, Neefjes J, Michalides R (2007) PKA-induced resistance to tamoxifen is associated with an altered orientation of ERalpha towards co-activator SRC-1. EMBO J 26:3534–3544PubMedCrossRefGoogle Scholar
  129. 129.
    Michalides R, Griekspoor A, Balkenende A, Verwoerd D, Janssen L, Jalink K, Floore A, Velds A, van’t Veer L, Neefjes J (2004) Tamoxifen resistance by a conformational arrest of the estrogen receptor alpha after PKA activation in breast cancer. Cancer Cell 5:597–605PubMedCrossRefGoogle Scholar
  130. 130.
    Bayaa M, Booth RA, Sheng Y, Liu XJ (2000) The classical progesterone receptor mediates Xenopus oocyte maturation through a nongenomic mechanism. Proc Natl Acad Sci USA 97:12607–12612PubMedCrossRefGoogle Scholar
  131. 131.
    Tian J, Kim S, Heilig E, Ruderman JV (2000) Identification of XPR-1, a progesterone receptor required for Xenopus oocyte activation. Proc Natl Acad Sci USA 97:14358–14363PubMedCrossRefGoogle Scholar
  132. 132.
    Faivre E, Skildum A, Pierson-Mullany L, Lange CA (2005) Integration of progesterone receptor mediated rapid signaling and nuclear actions in breast cancer cell models: role of mitogen-activated protein kinases and cell cycle regulators. Steroids 70:418–426PubMedCrossRefGoogle Scholar
  133. 133.
    Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, Levin ER (2007) A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem 282:22278–22288PubMedCrossRefGoogle Scholar
  134. 134.
    Boonyaratanakornkit V, Scott MP, Ribon V, Sherman L, Anderson SM, Maller JL, Miller WT, Edwards DP (2001) Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates c-Src family tyrosine kinases. Mol Cell 8:269–280PubMedCrossRefGoogle Scholar
  135. 135.
    Bagowski CP, Myers JW, Ferrell JE Jr (2001) The classical progesterone receptor associates with p42 MAPK and is involved in phosphatidylinositol 3-kinase signaling in Xenopus oocytes. J Biol Chem 276:37708–37714PubMedCrossRefGoogle Scholar
  136. 136.
    Zhu Y, Rice CD, Pang Y, Pace M, Thomas P (2003) Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc Natl Acad Sci USA 100:2231–2236PubMedCrossRefGoogle Scholar
  137. 137.
    Kazeto Y, Goto-Kazeto R, Thomas P, Trant JM (2005) Molecular characterization of three forms of putative membrane-bound progestin receptors and their tissue-distribution in channel catfish, Ictalurus punctatus. J Mol Endocrinol 34:781–791PubMedCrossRefGoogle Scholar
  138. 138.
    Dressing GE, Thomas P (2007) Identification of membrane progestin receptors in human breast cancer cell lines and biopsies and their potential involvement in breast cancer. Steroids 72:111–116PubMedCrossRefGoogle Scholar
  139. 139.
    Karteris E, Zervou S, Pang Y, Dong J, Hillhouse EW, Randeva HS, Thomas P (2006) Progesterone signaling in human myometrium through two novel membrane G protein-coupled receptors: potential role in functional progesterone withdrawal at term. Mol Endocrinol 20:1519–1534PubMedCrossRefGoogle Scholar
  140. 140.
    Hanna R, Pang Y, Thomas P, Zhu Y (2006) Cell-surface expression, progestin binding, and rapid nongenomic signaling of zebrafish membrane progestin receptors alpha and beta in transfected cells. J Endocrinol 190:247–260PubMedCrossRefGoogle Scholar
  141. 141.
    Nutu M, Weijdegard B, Thomas P, Bergh C, Thurin-Kjellberg A, Pang Y, Billig H, Larsson DG (2007) Membrane progesterone receptor gamma: tissue distribution and expression in ciliated cells in the fallopian tube. Mol Reprod Dev 74:843–850PubMedCrossRefGoogle Scholar
  142. 142.
    O’Lone R, Frith MC, Karlsson EK, Hansen U (2004) Genomic targets of nuclear estrogen receptors. Mol Endocrinol 18:1859–1875PubMedCrossRefGoogle Scholar
  143. 143.
    Saville B, Wormke M, Wang F, Nguyen T, Enmark E, Kuiper G, Gustafsson JA, Safe S (2000) Ligand-, cell-, and estrogen receptor subtype (alpha/beta)-dependent activation at GC-rich (Sp1) promoter elements. J Biol Chem 275:5379–5387PubMedCrossRefGoogle Scholar
  144. 144.
    Wu H, Chen Y, Liang J, Shi B, Wu G, Zhang Y, Wang D, Li R, Yi X, Zhang H, Sun L, Shang Y (2005) Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 438:981–987PubMedCrossRefGoogle Scholar
  145. 145.
    Gaub MP, Bellard M, Scheuer I, Chambon P, Sassone-Corsi P (1990) Activation of the ovalbumin gene by the estrogen receptor involves the fos-jun complex. Cell 63:1267–1276PubMedCrossRefGoogle Scholar
  146. 146.
    Umayahara Y, Kawamori R, Watada H, Imano E, Iwama N, Morishima T, Yamasaki Y, Kajimoto Y, Kamada T (1994) Estrogen regulation of the insulin-like growth factor I gene transcription involves an AP-1 enhancer. J Biol Chem 269:16433–16442PubMedGoogle Scholar
  147. 147.
    Kushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM, Webb P (2000) Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol 74:311–317PubMedCrossRefGoogle Scholar
  148. 148.
    Webb P, Nguyen P, Valentine C, Lopez GN, Kwok GR, McInerney E, Katzenellenbogen BS, Enmark E, Gustafsson JA, Nilsson S, Kushner PJ (1999) The estrogen receptor enhances AP-1 activity by two distinct mechanisms with different requirements for receptor transactivation functions. Mol Endocrinol 13:1672–1685PubMedCrossRefGoogle Scholar
  149. 149.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96PubMedCrossRefGoogle Scholar
  150. 150.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57:43–66PubMedCrossRefGoogle Scholar
  151. 151.
    Shelly W, Draper MW, Krishnan V, Wong M, Jaffe RB (2008) Selective estrogen receptor modulators: an update on recent clinical findings. Obstet Gynecol Surv 63:163–181PubMedGoogle Scholar
  152. 152.
    Bergman L, Beelen ML, Gallee MP, Hollema H, Benraadt J, van Leeuwen FE (2000) Risk and prognosis of endometrial cancer after tamoxifen for breast cancer. Comprehensive Cancer Centres’ ALERT Group. Assessment of liver and endometrial cancer risk following tamoxifen. Lancet 356:881–887PubMedCrossRefGoogle Scholar
  153. 153.
    Clemens JA, Bennett DR, Black LJ, Jones CD (1983) Effects of a new antiestrogen, keoxifene (LY156758), on growth of carcinogen-induced mammary tumors and on LH and prolactin levels. Life Sci 32:2869–2875PubMedCrossRefGoogle Scholar
  154. 154.
    Neven P, Goldstein SR, Ciaccia AV, Zhou L, Silfen SL, Muram D (2002) The effect of raloxifene on the incidence of ovarian cancer in postmenopausal women. Gynecol Oncol 85:388–390PubMedCrossRefGoogle Scholar
  155. 155.
    Poulin R, Merand Y, Poirier D, Levesque C, Dufour JM, Labrie F (1989) Antiestrogenic properties of keoxifene, trans-4-hydroxytamoxifen, and ICI 164384, a new steroidal antiestrogen, in ZR-75–1 human breast cancer cells. Breast Cancer Res Treat 14:65–76PubMedCrossRefGoogle Scholar
  156. 156.
    Delmas PD, Bjarnason NH, Mitlak BH, Ravoux AC, Shah AS, Huster WJ, Draper M, Christiansen C (1997) Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med 337:1641–1647PubMedCrossRefGoogle Scholar
  157. 157.
    Gennari L, Merlotti D, Paola VD, Nuti R (2008) Raloxifene in breast cancer prevention. Expert Opin Drug Saf 7:259–270PubMedCrossRefGoogle Scholar
  158. 158.
    Shang Y (2006) Molecular mechanisms of oestrogen and SERMs in endometrial carcinogenesis. Nat Rev Cancer 6:360–368PubMedCrossRefGoogle Scholar
  159. 159.
    Kim IY, Seong DH, Kim BC, Lee DK, Remaley AT, Leach F, Morton RA, Kim SJ (2002) Raloxifene, a selective estrogen receptor modulator, induces apoptosis in androgen-responsive human prostate cancer cell line LNCaP through an androgen-independent pathway. Cancer Res 62:3649–3653PubMedGoogle Scholar
  160. 160.
    Shazer RL, Jain A, Galkin AV, Cinman N, Nguyen KN, Natale RB, Gross M, Green L, Bender LI, Holden S, Kaplan L, Agus DB (2006) Raloxifene, an oestrogen-receptor-beta-targeted therapy, inhibits androgen-independent prostate cancer growth: results from preclinical studies and a pilot phase II clinical trial. BJU Int 97:691–697PubMedCrossRefGoogle Scholar
  161. 161.
    Dauvois S, White R, Parker MG (1993) The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling. J Cell Sci 106(Pt 4):1377–1388PubMedGoogle Scholar
  162. 162.
    Dauvois S, Danielian PS, White R, Parker MG (1992) Antiestrogen ICI 164, 384 reduces cellular estrogen receptor content by increasing its turnover. Proc Natl Acad Sci USA 89:4037–4041PubMedCrossRefGoogle Scholar
  163. 163.
    Strissel PL, Strick R (2005) Multiple effects of bioflavonoids on gene regulation, cell proliferation and apoptosis: natural compounds move into the lime light of cancer research. Leuk Res 29:859–861PubMedCrossRefGoogle Scholar
  164. 164.
    Beck V, Rohr U, Jungbauer A (2005) Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy? J Steroid Biochem Mol Biol 94:499–518PubMedCrossRefGoogle Scholar
  165. 165.
    Klijn JG, Setyono-Han B, Foekens JA (2000) Progesterone antagonists and progesterone receptor modulators in the treatment of breast cancer. Steroids 65:825–830PubMedCrossRefGoogle Scholar
  166. 166.
    Ariga N, Suzuki T, Moriya T, Kimura M, Inoue T, Ohuchi N, Sasano H (2001) Progesterone receptor A and B isoforms in the human breast and its disorders. Jpn J Cancer Res 92:302–308PubMedGoogle Scholar
  167. 167.
    Croxatto HB (2003) Mifepristone for luteal phase contraception. Contraception 68:483–488PubMedCrossRefGoogle Scholar
  168. 168.
    Maruo T, Matsuo H, Shimomura Y, Kurachi O, Gao Z, Nakago S, Yamada T, Chen W, Wang J (2003) Effects of progesterone on growth factor expression in human uterine leiomyoma. Steroids 68:817–824PubMedCrossRefGoogle Scholar
  169. 169.
    Friedman AJ, Barbieri RL, Doubilet PM, Fine C, Schiff I (1988) A randomized, double-blind trial of a gonadotropin releasing-hormone agonist (leuprolide) with or without medroxyprogesterone acetate in the treatment of leiomyomata uteri. Fertil Steril 49:404–409PubMedGoogle Scholar
  170. 170.
    Friedman AJ, Daly M, Juneau-Norcross M, Gleason R, Rein MS, LeBoff M (1994) Long-term medical therapy for leiomyomata uteri: a prospective, randomized study of leuprolide acetate depot plus either oestrogen-progestin or progestin ‘add-back’ for 2 years. Hum Reprod 9:1618–1625PubMedGoogle Scholar
  171. 171.
    Tiltman AJ (1985) The effect of progestins on the mitotic activity of uterine fibromyomas. Int J Gynecol Pathol 4:89–96PubMedGoogle Scholar
  172. 172.
    Segaloff A, Weed JC (1949) The progesterone therapy of human uterine leiomyomas. J Clin Endocrinol Metab 9:1273–91, illustGoogle Scholar
  173. 173.
    Stoeckemann K, Hegele-Hartung C, Chwalisz K (1995) Effects of the progesterone antagonists onapristone (ZK 98 299) and ZK 136 799 on surgically induced endometriosis in intact rats. Hum Reprod 10:3264–3271PubMedGoogle Scholar
  174. 174.
    Anstead GM, Carlson KE, Katzenellenbogen JA (1997) The estradiol pharmacophore: ligand structure-estrogen receptor binding affinity relationships and a model for the receptor binding site. Steroids 62:268–303PubMedCrossRefGoogle Scholar
  175. 175.
    Manas ES, Unwalla RJ, Xu ZB, Malamas MS, Miller CP, Harris HA, Hsiao C, Akopian T, Hum WT, Malakian K, Wolfrom S, Bapat A, Bhat RA, Stahl ML, Somers WS, Alvarez JC (2004) Structure-based design of estrogen receptor-beta selective ligands. J Am Chem Soc 126:15106–15119PubMedCrossRefGoogle Scholar
  176. 176.
    Mak HY, Hoare S, Henttu PM, Parker MG (1999) Molecular determinants of the estrogen receptor-coactivator interface. Mol Cell Biol 19:3895–3903PubMedGoogle Scholar
  177. 177.
    Bramlett KS, Burris TP (2002) Effects of selective estrogen receptor modulators (SERMs) on coactivator nuclear receptor (NR) box binding to estrogen receptors. Mol Genet Metab 76:225–233PubMedCrossRefGoogle Scholar
  178. 178.
    Danielian PS, White R, Lees JA, Parker MG (1992) Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J 11:1025–1033PubMedGoogle Scholar
  179. 179.
    Gu X (2002) Helix 12 in the human estrogen receptor (hER) is essential for the hER function by overcoming nucleosome repression in yeast. J Cell Biochem 86:224–238PubMedCrossRefGoogle Scholar
  180. 180.
    Ichinose H, Garnier JM, Chambon P, Losson R (1997) Ligand-dependent interaction between the estrogen receptor and the human homologues of SWI2/SNF2. Gene 188:95–100PubMedCrossRefGoogle Scholar
  181. 181.
    McDonnell DP, Chang CY, Norris JD (2000) Development of peptide antagonists that target estrogen receptor-cofactor interactions. J Steroid Biochem Mol Biol 74:327–335PubMedCrossRefGoogle Scholar
  182. 182.
    Perissi V, Staszewski LM, McInerney EM, Kurokawa R, Krones A, Rose DW, Lambert MH, Milburn MV, Glass CK, Rosenfeld MG (1999) Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev 13:3198–3208PubMedCrossRefGoogle Scholar
  183. 183.
    Hu X, Lazar MA (1999) The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402:93–96PubMedCrossRefGoogle Scholar
  184. 184.
    Heldring N, Pawson T, McDonnell D, Treuter E, Gustafsson JA, Pike AC (2007) Structural insights into corepressor recognition by antagonist-bound estrogen receptors. J Biol Chem 282:10449–10455PubMedCrossRefGoogle Scholar
  185. 185.
    Madauss KP, Grygielko ET, Deng SJ, Sulpizio AC, Stanley TB, Wu C, Short SA, Thompson SK, Stewart EL, Laping NJ, Williams SP, Bray JD (2007) A structural and in vitro characterization of asoprisnil: a selective progesterone receptor modulator. Mol Endocrinol 21:1066–1081PubMedCrossRefGoogle Scholar
  186. 186.
    Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, Consler TG, Parks DJ, Stewart EL, Willson TM, Lambert MH, Moore JT, Pearce KH, Xu HE (2002) Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110:93–105PubMedCrossRefGoogle Scholar
  187. 187.
    Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357PubMedCrossRefGoogle Scholar
  188. 188.
    Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 15:3667–3675PubMedGoogle Scholar
  189. 189.
    Leo C, Chen JD (2000) The SRC family of nuclear receptor coactivators. Gene 245:1–11PubMedCrossRefGoogle Scholar
  190. 190.
    Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, Tsai MJ, O’Malley BW (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97:17–27PubMedCrossRefGoogle Scholar
  191. 191.
    Nawaz Z, Lonard DM, Smith CL, Lev-Lehman E, Tsai SY, Tsai MJ, O’Malley BW (1999) The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol 19:1182–1189PubMedGoogle Scholar
  192. 192.
    Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB (1997) The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol 11:693–705PubMedCrossRefGoogle Scholar
  193. 193.
    Kotaja N, Aittomaki S, Silvennoinen O, Palvimo JJ, Janne OA (2000) ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation. Mol Endocrinol 14:1986–2000PubMedCrossRefGoogle Scholar
  194. 194.
    Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK, Rosenfeld MG (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404PubMedCrossRefGoogle Scholar
  195. 195.
    Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Stephan Ellmann
    • 1
  • Heinrich Sticht
    • 2
  • Falk Thiel
    • 1
  • Matthias W. Beckmann
    • 1
  • Reiner Strick
    • 1
  • Pamela L. Strissel
    • 1
  1. 1.Department of Gynaecology and Obstetrics, Laboratory for Molecular MedicineUniversity-Clinic ErlangenErlangenGermany
  2. 2.Department of Bioinformatics, Institute of BiochemistryUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations