Cellular and Molecular Life Sciences

, Volume 66, Issue 14, pp 2249–2261

DNA hypomethylation in the origin and pathogenesis of human diseases



The pathogenesis of any given human disease is a complex multifactorial process characterized by many biologically significant and interdependent alterations. One of these changes, specific to a wide range of human pathologies, is DNA hypomethylation. DNA hypomethylation signifies one of the major DNA methylation states that refers to a relative decrease from the “normal” methylation level. It is clear that disease by itself can induce hypomethylation of DNA; however, a decrease in DNA methylation can also have an impact on the predisposition to pathological states and disease development. This review presents evidence suggesting the involvement of DNA hypomethylation in the pathogenesis of several major human pathologies, including cancer, atherosclerosis, Alzheimer’s disease, and psychiatric disorders.


DNA hypomethylation G-specific hypomethylation Cancer Atherosclerosis Alzheimer’s disease Psychiatric disorders 


  1. 1.
    Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463PubMedCrossRefGoogle Scholar
  2. 2.
    Zoghbi HY, Beaudet AL (2007) Epigenetics and human disease. In: Allis CD, Jenuwein T, Reinberg D (eds) Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 435–456Google Scholar
  3. 3.
    Feinberg AP (2008) Epigenetics at the epicenter of modern medicine. JAMA 299:1345–1350PubMedCrossRefGoogle Scholar
  4. 4.
    Bird A (1992) The essentials of DNA methylation. Cell 70:5–8PubMedCrossRefGoogle Scholar
  5. 5.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080PubMedCrossRefGoogle Scholar
  6. 6.
    Kouzarides T, Berger SL (2007) Chromatin modifications and their mechanism of action. In: Allis CD, Jenuwein T, Reinberg D (eds) Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 191–209Google Scholar
  7. 7.
    Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 23:413–418PubMedCrossRefGoogle Scholar
  8. 8.
    Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610PubMedCrossRefGoogle Scholar
  9. 9.
    Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775:138–162PubMedGoogle Scholar
  10. 10.
    Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP (1996) S-adenosylmethionine and methylation. FASEB J 10:471–480PubMedGoogle Scholar
  11. 11.
    Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514PubMedCrossRefGoogle Scholar
  12. 12.
    Li E, Bird A (2007) DNA methylation in mammals. In: Allis CD, Jenuwein T, Reinberg D (eds) Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 341–356Google Scholar
  13. 13.
    Bird AP, Wolffe AP (1999) Methylation-induced repression—belts, braces, and chromatin. Cell 99:451–454PubMedCrossRefGoogle Scholar
  14. 14.
    Singer-Sam J, Riggs AD (1993) X-chromosome inactivation and DNA methylation. EXS 64:358–384PubMedGoogle Scholar
  15. 15.
    Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365PubMedCrossRefGoogle Scholar
  16. 16.
    Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340PubMedCrossRefGoogle Scholar
  17. 17.
    Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681PubMedCrossRefGoogle Scholar
  18. 18.
    Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210:604–610PubMedCrossRefGoogle Scholar
  19. 19.
    Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257PubMedCrossRefGoogle Scholar
  20. 20.
    Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A (2005) Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem 280:13341–13348PubMedCrossRefGoogle Scholar
  21. 21.
    Zhu H, Geiman TM, Xi S, Jiang Q, Schmidtmann A, Chen T, Li E, Muegge K (2006) Lsh is involved in de novo methylation of DNA. EMBO J 25:335–345PubMedCrossRefGoogle Scholar
  22. 22.
    Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810PubMedCrossRefGoogle Scholar
  23. 23.
    Aravin AA, Sachidanandam R, Bouc’his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31:785–799PubMedCrossRefGoogle Scholar
  24. 24.
    Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW, Jones PA (2002) Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22:480–491PubMedCrossRefGoogle Scholar
  25. 25.
    El-Osta A (2003) DNMT cooperativity––the developing links between methylation, chromatin structure and cancer. Bioessays 25:1071–1084PubMedCrossRefGoogle Scholar
  26. 26.
    Kimura H, Shiota K (2003) Methyl-CpG-binding protein, MeCP2, is target molecule for maintenance DNA methyltransferase, Dnmt1. J Biol Chem 278:4806–4812PubMedCrossRefGoogle Scholar
  27. 27.
    Kim JK, Samaranayake M, Pradhan S (2009) Epigenetic mechanisms in mammals. Cell Mol Life Sci 66:596–612PubMedCrossRefGoogle Scholar
  28. 28.
    Arita K, Ariyoshi M, Tochio H, Nakamura Y, Shirakawa M (2008) Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base flipping mechanism. Nature 455:818–821PubMedCrossRefGoogle Scholar
  29. 29.
    Avvakumov GV, Walker JR, Xue S, Li Y, Duan S, Bronner C, Arrowsmith CH, Dhe-Paganon S (2008) Structural basis for recognition of hemimethylated DNA by the SRA domain of human UHRF1. Nature 455:822–825PubMedCrossRefGoogle Scholar
  30. 30.
    Hashimoto H, Horton JR, Zhang X, Bostick M, Jacobsen SE, Cheng X (2008) The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 455:826–829PubMedCrossRefGoogle Scholar
  31. 31.
    Dunn BK (2003) Hypomethylation: one side of a larger picture. Ann NY Acad Sci 983:28–42PubMedCrossRefGoogle Scholar
  32. 32.
    Gama-Sosa MA, Wang RY, Kuo KC, Gehrke CW, Ehrlich M (1983) The 5-methylcytosine content of highly repeated sequences in human DNA. Nucleic Acids Res 11:3087–3095PubMedCrossRefGoogle Scholar
  33. 33.
    Rollins RA, Haghighi F, Edwards JR, Das R, Zhang MQ, Ju J, Bestor TH (2006) Large-scale structure of genomic methylation patterns. Genome Res 16:157–163PubMedCrossRefGoogle Scholar
  34. 34.
    Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476PubMedCrossRefGoogle Scholar
  35. 35.
    Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99:3740–3745PubMedCrossRefGoogle Scholar
  36. 36.
    Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926PubMedCrossRefGoogle Scholar
  37. 37.
    Ooi SK, Bestor TH (2008) The colorful history of active DNA demethylation. Cell 133:1145–1148PubMedCrossRefGoogle Scholar
  38. 38.
    Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, Gaudet F, Li E, Chen T (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41:125–129PubMedCrossRefGoogle Scholar
  39. 39.
    Niculescu MD, Zeisel SH (2002) Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr 132:2333S–2335SPubMedGoogle Scholar
  40. 40.
    Ulrey CL, Liu L, Andrews LG, Tollefsbol TO (2005) The impact of metabolism on DNA methylation. Hum Mol Genet 14:R139–R147PubMedCrossRefGoogle Scholar
  41. 41.
    Weitzman SA, Turk PW, Milkowski DH, Kozlowski K (1994) Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci USA 91:1261–1264PubMedCrossRefGoogle Scholar
  42. 42.
    Valinluck V, Sowers LC (2007) Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 67:946–950PubMedCrossRefGoogle Scholar
  43. 43.
    Goodman JI, Counts JL (1993) Hypomethylation of DNA: a possible nongenotoxic mechanism underlying the role of cell proliferation in carcinogenesis. Environ Health Perspect 101:169–172PubMedCrossRefGoogle Scholar
  44. 44.
    Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492PubMedCrossRefGoogle Scholar
  45. 45.
    Creusot F, Acs G, Christman JK (1982) Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2′-deoxycytidine. J Biol Chem 257:2041–2048PubMedGoogle Scholar
  46. 46.
    Jamaluddin MD, Yang X, Wang H (2007) Hyperhomocysteinemia, DNA methylation and vascular disease. Clin Chem Lab Med 45:1660–1666PubMedCrossRefGoogle Scholar
  47. 47.
    Reichard JF, Schnekenburger M, Puga A (2007) Long-term low-dose arsenic exposure induces loss of DNA methylation. Biochem Biophys Res Commun 352:188–192PubMedCrossRefGoogle Scholar
  48. 48.
    Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68:1018–1030PubMedCrossRefGoogle Scholar
  49. 49.
    Seitz HK, Stickel F (2007) Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7:599–612PubMedCrossRefGoogle Scholar
  50. 50.
    Liu H, Zhou Y, Boggs SE, Belinsky SA, Liu J (2007) Cigarette smoke induces demethylation of prometastatic oncogene synuclein-gamma in lung cancer cells by downregulation of DNMT3B. Oncogene 26:5900–5910PubMedCrossRefGoogle Scholar
  51. 51.
    Myant K, Stancheva I (2008) LSH cooperates with DNA methyltransferases to repress transcription. Mol Cell Biol 28:215–226PubMedCrossRefGoogle Scholar
  52. 52.
    Zeisel SH (2008) Genetic polymorphisms in methyl-group metabolism and epigenetics: lessons from humans and mouse models. Brain Res 1237:5–11PubMedCrossRefGoogle Scholar
  53. 53.
    Castro R, Rivera I, Racasco P, Camilo ME, Jakobs C, Blom HJ, de Almeida IT (2004) 5, 10-methylenetetrahydrofolate reductase (MTHFR) 677C → T and 1298A → C mutations are associated with DNA hypomethylation. J Med Genet 41:454–458PubMedCrossRefGoogle Scholar
  54. 54.
    Oommen AM, Griffin JB, Sarath G, Zempleni J (2005) Roles of nutrients in epigenetic events. J Nutr Biochem 16:74–77PubMedCrossRefGoogle Scholar
  55. 55.
    Wainfan E, Poirier LA (1992) Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res 52:2071S–2077SPubMedGoogle Scholar
  56. 56.
    Christman JK (1995) Lipotrope deficiency and persistent changes in DNA methylation. Adv Exp Med Biol 375:97–106PubMedGoogle Scholar
  57. 57.
    Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP (1997) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci USA 94:10907–10912PubMedCrossRefGoogle Scholar
  58. 58.
    Lehman-McKeeman LD, Gamsky EA, Hicks SM, Vassallo JD, Mar MH, Zeisel SH (2002) Diethanolamine induces hepatic choline deficiency in mice. Toxicol Sci 67:38–45PubMedCrossRefGoogle Scholar
  59. 59.
    Tao L, Yang S, Xie M, Kramer PM, Pereira MA (2000) Effect of trichloroethylene and its metabolites, dichloroacetic and trichloroacetic acid, on the methylation and expression of c-Jun and c-Myc protooncogenes in mouse liver: prevention by methionine. Toxicol Sci 54:399–407PubMedCrossRefGoogle Scholar
  60. 60.
    Shukla SD, Velazquez J, French SW, Lu SC, Ticku MK, Zakhari S (2008) Emerging role of epigenetics in the actions of alcohol. Alcohol Clin Exp Res 32:1525–1534PubMedCrossRefGoogle Scholar
  61. 61.
    Chen JH, Hales CN, Ozanne SE (2007) DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res 35:7417–7428PubMedCrossRefGoogle Scholar
  62. 62.
    James SJ, Pogribny IP, Pogribna M, Miller BJ, Jernigan S, Melnyk S (2003) Mechanisms of DNA damage, DNA hypomethylation, and tumor progression in the folate/methyl-deficient rat model of hepatocarcinogenesis. J Nutr 133:3740S–3747SPubMedGoogle Scholar
  63. 63.
    Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC (2004) Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 32:4100–4108PubMedCrossRefGoogle Scholar
  64. 64.
    Tommasi S, Denissenko MF, Pfeifer GP (1997) Sunlight induces pyrimidine dimers preferentially at 5-methylcytosine bases. Cancer Res 57:4727–4730PubMedGoogle Scholar
  65. 65.
    Becker FF, Holton P, Ruchirawat M, Lapeyre JN (1985) Perturbation of maintenance and de novo DNA methylation in vitro by UVB (280–340 nm)-induced pyrimidine photodimers. Proc Natl Acad Sci USA 82:6055–6059PubMedCrossRefGoogle Scholar
  66. 66.
    Gorbunova V, Seluanov A, Mao Z, Hine C (2007) Changes in DNA repair during aging. Nucleic Acid Res 35:7466–7474PubMedCrossRefGoogle Scholar
  67. 67.
    Jost JP (1993) Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine. Proc Natl Acad Sci USA 90:4684–4688PubMedCrossRefGoogle Scholar
  68. 68.
    Kress C, Thomassin H, Grange T (2006) Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks. Proc Natl Acad Sci USA 103:11112–11117PubMedCrossRefGoogle Scholar
  69. 69.
    Swisher JF, Rand E, Cedar H, Marie Pyle A (1998) Analysis of putative RNase sensitivity and protease insensitivity of demethylation activity in extracts from rat myoblasts. Nucleic Acids Res 26:5573–5580PubMedCrossRefGoogle Scholar
  70. 70.
    Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M (1999) A mammalian protein with specific demethylase activity for mCpG DNA. Nature 397:579–583PubMedCrossRefGoogle Scholar
  71. 71.
    Métivier R, Gallais R, Tiffoche C, Le Péron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P, Demay F, Reid G, Benes V, Jeltsch A, Gannon F, Salbert G (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452:45–50PubMedCrossRefGoogle Scholar
  72. 72.
    Kangaspeska S, Stride B, Métivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP, Benes V, Gannon F, Reid G (2008) Transient cyclical methylation of promoter DNA. Nature 452:112–115PubMedCrossRefGoogle Scholar
  73. 73.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  74. 74.
    Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799PubMedCrossRefGoogle Scholar
  75. 75.
    Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692PubMedCrossRefGoogle Scholar
  76. 76.
    Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11:6883–6894PubMedCrossRefGoogle Scholar
  77. 77.
    Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92PubMedCrossRefGoogle Scholar
  78. 78.
    Flatau E, Bogenmann E, Jones PA (1983) Variable 5-methylcytosine levels in human tumor cell lines and fresh pediatric tumor explants. Cancer Res 43:4901–4905PubMedGoogle Scholar
  79. 79.
    Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M (1988) Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res 48:1159–1161PubMedGoogle Scholar
  80. 80.
    Suzuki K, Suzuki I, Leodolter A, Alonso S, Horiuchi S, Yamashita K, Perucho M (2006) Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell 9:199–207PubMedCrossRefGoogle Scholar
  81. 81.
    Rauch TA, Zhong X, Wu X, Wang M, Kernstine KH, Wang Z, Riggs AD, Pfeifer GP (2008) High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci USA 105:252–257PubMedCrossRefGoogle Scholar
  82. 82.
    Lin CH, Hsieh SY, Sheen IS, Lee WC, Chen TC, Shyu WC, Liaw YF (2001) Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res 61:4238–4243PubMedGoogle Scholar
  83. 83.
    Jackson K, Yu MC, Arakawa K, Fiala E, Youn B, Fiegl H, Müller-Holzner E, Widschwendter M, Ehrlich M (2004) DNA hypomethylation is prevalent in low-grade breast cancers. Cancer Biol Ther 3:1225–1231PubMedGoogle Scholar
  84. 84.
    Nakagawa T, Kanai Y, Ushijima S, Kitamura T, Kakizoe T, Hirohashi S (2005) DNA hypomethylation on pericentromeric satellite regions significantly correlates with loss of heterozygosity on chromosome 9 in urothelial carcinomas. J Urol 173:243–246PubMedCrossRefGoogle Scholar
  85. 85.
    Widschwendter M, Jiang G, Woods C, Müller HM, Fiegl H, Goebel G, Marth C, Müller-Holzner E, Zeimet AG, Laird PW, Ehrlich M (2004) DNA hypomethylation and ovarian cancer biology. Cancer Res 64:4472–4480PubMedCrossRefGoogle Scholar
  86. 86.
    Watts GS, Futscher BW, Holtan N, DeGeest K, Domann FE, Rose SL (2008) DNA methylation changes in ovarian cancer are cumulative with disease progression and identify tumor stage. BMC Med Genomics 1:47PubMedCrossRefGoogle Scholar
  87. 87.
    Kim YI, Giuliano A, Hatch KD, Schneider A, Nour MA, Dallal GE, Selhub J, Mason JB (1994) Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer 74:893–899PubMedCrossRefGoogle Scholar
  88. 88.
    Christman JK (2003) Diet, DNA methylation and cancer. In: Daniel H, Zempleni J (eds) Molecular nutrition. CABI Publishing, Oxon, pp 237–265Google Scholar
  89. 89.
    Moore LE, Pfeiffer RM, Poscablo C, Real FX, Kogevinas M, Silverman D, Garcίa-Closas R, Chanock S, Tardón A, Serra C, Carrato A, Dosemeci M, Garcίa-Closas M, Esteller M, Fraga M, Rothman N, Malats N (2008) Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish bladder cancer study: a case-control study. Lancet Oncol 9:359–366PubMedCrossRefGoogle Scholar
  90. 90.
    Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455PubMedCrossRefGoogle Scholar
  91. 91.
    Yamada Y, Jackson-Grusby L, Linhart H, Meissner A, Eden A, Lin H, Jaenisch R (2005) Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci USA 102:13580–13585PubMedCrossRefGoogle Scholar
  92. 92.
    Fan T, Schmidtmann A, Xi S, Briones V, Zhu H, Suh HC, Gooya J, Keller JR, Xu H, Roayaei J, Anver M, Ruscetti S, Muegge K (2008) DNA hypomethylation caused by LSH deletion promotes erythroleukemia development. Epigenetics 3:134–142PubMedGoogle Scholar
  93. 93.
    Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Chan AT, Schernhammer ES, Giovannucci EL, Fuchs CS (2008) A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst 100:1734–1738PubMedCrossRefGoogle Scholar
  94. 94.
    Wong NC, Wong LH, Quach JM, Canham P, Craig JM, Song JZ, Clark SJ, Choo LHA (2006) Permissive transcriptional activity at the centromere through pockets of DNA hypomethylation. PLoS Genet 2:e17PubMedCrossRefGoogle Scholar
  95. 95.
    Bouzinba-Segard H, Guais A, Francastel C (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci USA 103:8709–8714PubMedCrossRefGoogle Scholar
  96. 96.
    Yehezkel S, Segev Y, Viegas-Péquignot E, Skorecki K, Selig S (2008) Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet 17:2776–2789PubMedCrossRefGoogle Scholar
  97. 97.
    Vera E, Canela A, Fraga MF, Esteller M, Blasco MA (2008) Epigenetic regulation of telomeres in human cancer. Oncogene 27:6817–6833PubMedCrossRefGoogle Scholar
  98. 98.
    Howard G, Eiges R, Gaudet F, Jaenisch R, Eden A (2008) Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27:404–408PubMedCrossRefGoogle Scholar
  99. 99.
    Jelinic P, Shaw P (2007) Loss of imprinting and cancer. J Pathol 211:261–268PubMedCrossRefGoogle Scholar
  100. 100.
    Cui H (2007) Loss of imprinting of IGF2 as an epigenetic marker for the risk of human cancer. Dis Markers 23:105–112PubMedGoogle Scholar
  101. 101.
    Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh CL, Feinberg AP (2002) Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res 62:6442–6446PubMedGoogle Scholar
  102. 102.
    Ito Y, Koessler T, Ibrahim AE, Rai S, Vowler SL, Abu-Amero S, Silva AL, Maia AT, Huddleston JE, Uribe-Lewis S, Woodfine K, Jagodic M, Nativio R, Dunning A, Moore G, Klenova E, Bingham S, Pharoah PD, Brenton JD, Beck S, Sandhu MS, Murrell A (2008) Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer. Hum Mol Genet 17:2633–2643PubMedCrossRefGoogle Scholar
  103. 103.
    Tang SH, Yang DH, Huang W, Zhou HK, Lu XH, Ye G (2006) Hypomethylation of P4 promoter induces expression of the insulin-like growth factor-II gene in hepatocellular carcinoma in a Chinese population. Clin Cancer Res 12:4171–4177PubMedCrossRefGoogle Scholar
  104. 104.
    Takai D, Gonzales FA, Tsai YC, Thayer MJ, Jones PA (2001) Large scale mapping of methylcytosines in CTCF-binding sites in the human H19 promoter and aberrant hypomethylation in human bladder cancer. Hum Mol Genet 10:2619–2626PubMedCrossRefGoogle Scholar
  105. 105.
    Kondo M, Suzuki H, Ueda R, Osada H, Takagi K, Takahashi T, Takahashi T (1995) Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene 10:1193–1198PubMedGoogle Scholar
  106. 106.
    Scelfo RA, Schwienbacher C, Veronese A, Gramantieri L, Bolondi L, Querzoli P, Nenci I, Calin GA, Angioni A, Barbanti-Brodano G, Negrini M (2002) Loss of methylation at chromosome 11p15.5 is common in human adult tumors. Oncogene 21:2564–2572PubMedCrossRefGoogle Scholar
  107. 107.
    Ehrich M, Turner J, Gibbs P, Lipton L, Giovanneti M, Cantor C, van den Boom D (2008) Cytosine methylation profiling of cancer cell lines. Proc Natl Acad Sci USA 105:4844–4849PubMedCrossRefGoogle Scholar
  108. 108.
    Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 103:1412–1417PubMedCrossRefGoogle Scholar
  109. 109.
    Shen L, Kondo Y, Guo Y, Zhang J, Zhang L, Ahmed S, Shu J, Chen X, Waterland RA, Issa JP (2007) Genome-wide profiling of DNA reveals a class of normally methylated CpG island promoters. PLoS Genet 3:2023–2036PubMedCrossRefGoogle Scholar
  110. 110.
    Nakamura N, Takenaga K (1998) Hypomethylation of the metastasis-associated S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. Clin Exp Metastasis 16:471–479PubMedCrossRefGoogle Scholar
  111. 111.
    Xie R, Loose DS, Shipley GL, Xie S, Bassett Jr RL, Broaddus RR (2007) Hypomethylation-induced expression of S100A4 in endometrial carcinoma. Mod Pathol 20:1045–1054PubMedCrossRefGoogle Scholar
  112. 112.
    Sato N, Maitra A, Fukushima N, van Heek NT, Matsubayashi H, Iacobuzio-Donahue CA, Rosty C, Coggins M (2003) Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res 63:4158–4166PubMedGoogle Scholar
  113. 113.
    Gomez A, Karlgren M, Edler D, Bernal ML, Mkrtchian S, Ingelman-Sundberg M (2007) Expression of CYP2W1 in colon tumors: regulation by gene methylation. Pharmacogenomics 8:1315–1325PubMedCrossRefGoogle Scholar
  114. 114.
    Milicic A, Harrison LA, Goodlad RA, Hardy RG, Nicholson AM, Presz M, Sieber O, Santander S, Pringle JH, Mandir N, East P, Obszynska J, Sanders S, Piazuelo E, Shaw J, Harrison R, Tomlinson IP, McDonald SA, Wright NA, Jankowski JA (2008) Ectopic expression of P-cadherin correlates with promoter hypomethylation early in colorectal carcinogenesis and enhanced intestinal crypt fission in vivo. Cancer Res 68:7760–7768PubMedCrossRefGoogle Scholar
  115. 115.
    Paredes J, Albergaria A, Oliveira JT, Jerónimo C, Milanezi F, Schmidt FC (2005) P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clin Cancer Res 11:5869–5877PubMedCrossRefGoogle Scholar
  116. 116.
    Grunau C, Brun ME, Rivals I, Selves J, Hindermann W, Favre-Mercuret M, Granier G, De Sario A (2008) BAGE hypomethylation, a new epigenetic biomarker for colon cancer detection. Cancer Epidemiol Biomarkers Prev 17:1374–1379PubMedCrossRefGoogle Scholar
  117. 117.
    Adany R, Iozzo RV (1991) Hypomethylation of the decorin proteoglycan gene in human colon cancer. Biochem J 276:301–306PubMedGoogle Scholar
  118. 118.
    Kim KH, Choi JS, Kim IJ, Ku JL, Park JG (2006) Promoter hypomethylation and reactivation of MAGE-A1 and MAGE-A3 genes in colorectal cancer cell lines and cancer tissues. World J Gastroenterol 12:5651–5657PubMedGoogle Scholar
  119. 119.
    Jung EJ, Kim MA, Lee HS, Yang HK, Lee YM, Lee BL, Kim WH (2005) Expression of family A melanoma antigen in human gastric carcinoma. Anticancer Res 25:2105–2211PubMedGoogle Scholar
  120. 120.
    Lim JH, Kim SP, Gabrielson E, Park YB, Park JW, Kwon TK (2005) Activation of human cancer/testis antigen gene, XAGE-1, in tumor cells is correlated with CpG island hypomethylation. Int J Cancer 116:200–206PubMedCrossRefGoogle Scholar
  121. 121.
    Oshimo Y, Nakayama H, Ito R, Kitadai Y, Yoshida K, Chayama K, Yasui W (2003) Promoter methylation of cyclin D2 gene in gastric carcinoma. Int J Oncol 23:1663–1670PubMedGoogle Scholar
  122. 122.
    Akiyama Y, Maesawa C, Ogasawara S, Terashima M, Masuda T (2003) Cell-type-specific repression of the maspin gene is disrupted frequently by demethylation at the promoter region in gastric intestinal metaplasia and cancer cells. Am J Pathol 163:1911–1919PubMedGoogle Scholar
  123. 123.
    Cao D, Zhang Q, Wu LS, Salaria SN, Winter JW, Hruban RH, Goggins MS, Abbruzzese JL, Maitra A, Ho L (2007) Prognostic significance of maspin in pancreatic ductal adenocarcinoma: tissue microarray analysis of 223 surgically resected cases. Mod Pathol 20:570–578PubMedCrossRefGoogle Scholar
  124. 124.
    Ogasawara S, Maesawa C, Yamamoto M, Akiyama Y, Wada K, Fujisawa K, Higuchi T, Tomisawa Y, Sato N, Endo S, Saito K, Masuda T (2004) Disruption of cell-type-specific methylation at the Maspin gene promoter is frequently involved in undifferentiated thyroid cancers. Oncogene 23:1117–1124PubMedCrossRefGoogle Scholar
  125. 125.
    Mesquita P, Peixoto AJ, Seruca R, Hanski C, Almeida R, Silva F, Reis C, David L (2003) Role of site-specific promoter hypomethylation in aberrant MUC2 mucin expression in mucinous gastric carcinoma. Cancer Lett 189:129–136PubMedCrossRefGoogle Scholar
  126. 126.
    Cui L, Xu LY, Shen ZY, Tao Q, Gao SY, Lv Z, Du ZP, Fang WK, Li EM (2008) NGALR is overexpressed and regulated by hypomethylation in esophageal squamous cell carcinoma. Clin Cancer Res 14:7674–7681PubMedCrossRefGoogle Scholar
  127. 127.
    Tabu K, Sasai K, Kimura T, Wang L, Aoyanagi E, Kohsaka S, Tanino M, Nishihara H, Tanaka S (2008) Promoter hypomethylation regulates CD133 expression in human gliomas. Cell Res 18:1037–1046PubMedCrossRefGoogle Scholar
  128. 128.
    Kim SJ, Kang HS, Chang HL, Jung YC, Sim HB, Lee KS, Ro J, Lee ES (2008) Promoter hypomethylation of the N-acetyltransferase 1 gene in breast cancer. Oncol Rep 19:663–668PubMedGoogle Scholar
  129. 129.
    Singh P, Yang M, Dai H, Yu D, Huang Q, Tan W, Kernstine KH, Lin D, Shen B (2008) Overexpression and hypomethylation of flap endonuclease 1 gene in breast and other cancers. Mol Cancer Res 6:1710–1717PubMedGoogle Scholar
  130. 130.
    Gupta A, Godwin AK, Vanderveer L, Lu A, Liu J (2003) Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Cancer Res 63:664–673PubMedGoogle Scholar
  131. 131.
    Czekierdowski A, Czekierdowska S, Wielgos M, Smolen A, Kaminski P, Kotarski J (2006) The role of CpG islands hypomethylation and abnormal expression of neuronal protein synuclein-gamma (SNCG) in ovarian cancer. Neuro Endocrinol Lett 27:381–386PubMedGoogle Scholar
  132. 132.
    Pakneshan P, Szyf M, Rabbani SA (2005) Hypomethylation of urokinase (uPA) promoter in breast and prostate cancer: prognostic and therapeutic implications. Curr Cancer Drug Targets 5:471–488PubMedCrossRefGoogle Scholar
  133. 133.
    van den Eynden GG, van Laere SJ, van der Auwera I, Merajver SD, van Marck EA, van Dam PB, Vermeulen PB, Dirix LY, van Golen KL (2006) Overexpression of caveolin-1 and -2 in cell lines and in human samples of inflammatory breast cancer. Breast Cancer Res Treat 95:219–228PubMedCrossRefGoogle Scholar
  134. 134.
    Rodenhiser DI, Andrews J, Kennette W, Sadicovic B, Mendlowitz A, Tuck AB, Chambers AF (2008) Epigenetic mapping and functional analysis in breast cancer metastasis using whole-genome promoter tiling microarrays. Breast Cancer Res 10:R62PubMedCrossRefGoogle Scholar
  135. 135.
    Okada H, Kimura MT, Tan D, Fujiwara K, Igarashi J, Makuuchi M, Hui AM, Tsurumaru M, Nagase H (2005) Frequent trefoil factor 3 (TFF3) overexpression and promoter hypomethylation in mouse and human hepatocellular carcinomas. Int J Oncol 2005(26):369–377Google Scholar
  136. 136.
    Litkouci B, Kwong J, Lo CM, Smedley JG 3rd, McClane BA, Aponte M, Gao Z, Sarno JL, Hinners J, Welch WR, Berkowitz RS, Mok SC, Garner EI (2007) Claudin-4 overexpression in epithelial ovarian cancer is associated with hypomethylation and is a potential target for modulation of tight junction barrier function using C-terminal fragment of Clostridium perfringens enterotoxin. Neoplasia 9:304–314CrossRefGoogle Scholar
  137. 137.
    Wu H, Chen Y, Liang J, Shi B, Wu G, Zhang Y, Wang D, Li R, Yi X, Zhang H, Sun L, Shang Y (2005) Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 438:981–987PubMedCrossRefGoogle Scholar
  138. 138.
    Gokul G, Gautami B, Malathi S, Sowjanya AP, Poli UR, Jain M, Ramarkrishna G, Khosla S (2007) DNA methylation profile at the DNMT3L promoter: a potential biomarker for cervical cancer. Epigenetics 2:80–85PubMedGoogle Scholar
  139. 139.
    Lee TS, Kim JW, Kang GH, Park NH, Song YS, Kang SB, Lee HP (2006) DNA hypomethylation of CAGE promotors in squamous cell carcinoma of uterine cervix. Ann NY Acad Sci 1091:218–224PubMedCrossRefGoogle Scholar
  140. 140.
    Asada H, Yamagata Y, Taketani T, Matsuoka A, Tamura H, Hattori N, Ohgane J, Hattori N, Shiota K, Sugino N (2008) Potential link between estrogen receptor-alpha gene hypomethylation and uterine fibroid formation. Mol Hum Reprod 14:539–545PubMedCrossRefGoogle Scholar
  141. 141.
    Kato N, Tamura G, Motoyama T (2008) Hypomethylation of hepatocyte factor-1beta (HNF-1beta) CpG island in clear cell carcinoma of the ovary. Virchows Arch 452:175–180PubMedCrossRefGoogle Scholar
  142. 142.
    Woloszynska-Read A, James SR, Link PA, Yu J, Odunsi K, Karpf AR (2007) DNA methylation-dependent regulation of BORIS/CTCFL expression in ovarian cancer. Cancer Immun 7:21PubMedGoogle Scholar
  143. 143.
    Cho M, Uemura H, Kim SC, Kawada Y, Yoshida K, Hirao Y, Konishi N, Saga S, Yoshikawa K (2001) Hypomethylation of the MN/CA9 promoter and upregulated MN/CA9 expression in human renal cell carcinoma. Br J Cancer 85:563–567PubMedCrossRefGoogle Scholar
  144. 144.
    Chilukamarri L, Hancock AL, Malik S, Zabkiewicz J, Baker JA, Greenhough A, Dallosso AR, Huang THM, Royer-Pokora B, Brown KW, Malik K (2007) Hypomethylation and aberrant expression of the glioma pathogenesis-related gene in Wilms tumors. Neoplasia 9:970–978PubMedCrossRefGoogle Scholar
  145. 145.
    Ogishima T, Shiina H, Breault JE, Tabatabai L, Bassett WW, Enokida H, Li LC, Kawakami T, Urakami S, Ribeiro-Filho LA, Terashima M, Fujime M, Igawa M, Dahiya R (2005) Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clin Cancer Res 11:1028–1036PubMedGoogle Scholar
  146. 146.
    Schenk T, Stengel S, Goellner S, Steinbach D, Saluz HP (2007) Hypomethylation of PRAME is responsible for its aberrant overexpression in human malignancies. Genes Chromosomes Cancer 46:796–804PubMedCrossRefGoogle Scholar
  147. 147.
    Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, San Jose-Eneriz E, Garate L, Cordeu L, Cervantes F, Prosper F, Heiniger A, Torres A (2007) Epigenetic regulation of human cancer/testis antigen gene, HAGE, in chronic myeloid leukemia. Haematologica 92:153–162PubMedCrossRefGoogle Scholar
  148. 148.
    Yoshida M, Nosaka K, Yasunaga J, Nishikata I, Morishita K, Matsuoka M (2004) Aberrant expression of the MEL1S gene identified in association with hypomethylation in adult T-cell leukemia cells. Blood 103:2753–2760PubMedCrossRefGoogle Scholar
  149. 149.
    Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC (1993) Bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82:1820–1828PubMedGoogle Scholar
  150. 150.
    Yuille MR, Condie A, Stone EM, Wilsher J, Bradshaw PS, Brooks L, Catovsky D (2001) TCL1 is activated by chromosomal rearrangement or by hypomethylation. Genes Chromosomes Cancer 30:336–341PubMedCrossRefGoogle Scholar
  151. 151.
    Goldstein M, Meller I, Orr-Urtreger A (2007) FGFR1 over-expression in primary rhabdomyosarcoma tumors is associated with hypomethylation of a 5′ CpG island and abnormal expression of the AKT1, NOG, and BMP4 genes. Genes Chromosomes Cancer 46:1028–1038PubMedCrossRefGoogle Scholar
  152. 152.
    Watanabe M, Ogawa Y, Itoh K, Koiwa T, Kadin ME, Watanabe T, Okayasu I, Higashihara M, Horie R (2008) Hypomethylation of CD30 CpG islands with aberrant JunB expression drives CD30 induction in Hodgkin lymphoma and anaplastic large cell lymphoma. Lab Invest 88:48–57PubMedCrossRefGoogle Scholar
  153. 153.
    Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 16:R50–R59PubMedCrossRefGoogle Scholar
  154. 154.
    Hinshelwood RA, Clark SJ (2008) Breast cancer epigenetics: normal human mammary epithelial cells as a model system. J Mol Med 86:1315–1328PubMedCrossRefGoogle Scholar
  155. 155.
    Wild CP (2009) Environmental exposure measurement in cancer epidemiology. Mutagenesis 24:117–125PubMedCrossRefGoogle Scholar
  156. 156.
    Poirier MC (2004) Chemical-induced DNA damage and human cancer risk. Nat Rev Cancer 4:630–637PubMedCrossRefGoogle Scholar
  157. 157.
    Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:53–262CrossRefGoogle Scholar
  158. 158.
    Moggs JG, Goodman JI, Trosko JE, Roberts RA (2004) Epigenetics and cancer: implications for drug discovery and safety assessment. Toxicol Appl Pharmacol 196:422–430PubMedCrossRefGoogle Scholar
  159. 159.
    Karpinets TV, Foy BD (2005) Tumorigenesis: the adaptation of mammalian cells to sustained stress environment by epigenetic alterations and succeeding matched mutations. Carcinogenesis 26:1323–1334PubMedCrossRefGoogle Scholar
  160. 160.
    Sawan C, Vaissière T, Murr R, Herceg Z (2008) Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res 642:1–13PubMedGoogle Scholar
  161. 161.
    Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC, Bertazzi PA, Yang AS (2007) Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 67:876–880PubMedCrossRefGoogle Scholar
  162. 162.
    Rusiecki JA, Baccarelli A, Bollati V, Tarantini L, Moore LE, Bonefeld-Jorgensen EC (2008) Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic Inuit. Environ Health Perspect 116:1547–1552PubMedCrossRefGoogle Scholar
  163. 163.
    Pisner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, Factor-Litvak P, Graziano JH, Gamble MV (2007) Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Banglageshi adults. Am J Clin Nutr 86:1179–1186Google Scholar
  164. 164.
    Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2009) Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med. doi:10.1164/rccm.200807-1097OC
  165. 165.
    Mensah GA, Brown DW (2007) An overview of cardiovascular disease burden in the United States. Health Aff (Millwood) 26:38–48CrossRefGoogle Scholar
  166. 166.
    Raines EW, Ross R (1995) Biology of atherosclerotic plaque formation: possible role of growth factor lesion development and the potential impact of soy. J Nutr 125:624S–630SPubMedGoogle Scholar
  167. 167.
    Newman PE (1999) Can reduced folic acid and vitamin B12 levels cause deficient DNA methylation producing mutations which initiate atherosclerosis? Med Hypothesis 53:421–424CrossRefGoogle Scholar
  168. 168.
    Nehler MR, Taylor LM Jr, Porter JM (1997) Homocysteinemia as a risk factor for atherosclerosis: a review. Cardiovasc Surg 5:559–567PubMedCrossRefGoogle Scholar
  169. 169.
    Dong C, Yoon W, Goldschmidt-Clermont J (2002) DNA methylation and atherosclerosis. J Nutr 132:2406S–2409SPubMedGoogle Scholar
  170. 170.
    Hiltunen MO, Ylä-Herttuala S (2003) DNA methylation, smooth muscle cells, and atherogenesis. Arterioscler Thromb Vasc Biol 23:1750–1753PubMedCrossRefGoogle Scholar
  171. 171.
    Zaina S, Lindholm MW, Lund G (2005) Nutrition and aberrant DNA methylation patterns in atherosclerosis: more than just hyperhomocysteinemia? J Nutr 135:5–8PubMedGoogle Scholar
  172. 172.
    Castro R, Rivera I, Struys EA, Jansen EEW, Ravasco P, Camilo ME, Blom HJ, Jakobs C, de Almeida IT (2003) Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem 49:1292–1296PubMedCrossRefGoogle Scholar
  173. 173.
    Yideng J, Jianzhong Z, Ying H, Juan S, Jinge Z, Shenglan W, Xiaoqun H, Shuren W (2007) Homocysteine-mediated expression of SAHH, DMNTs, MBD2, and DNA hypomethylation potential pathogenic mechanism in VSMCs. DNA Cell Biol 26:603–611PubMedCrossRefGoogle Scholar
  174. 174.
    Hiltunen MO, Turunen MP, Häkkinen TP, Rutanen J, Hedman M, Mäkinen K, Turunen AM, Aalto-Setälä K, Ylä-Herttuala S (2002) DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med 7:5–11PubMedCrossRefGoogle Scholar
  175. 175.
    Lund G, Andersson L, Lauria M, Lindholm M, Fraga MF, Villar-Garea A, Ballestar E, Esteller M, Zaina S (2004) DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem 279:29147–29154PubMedCrossRefGoogle Scholar
  176. 176.
    Zhao L, Funk CD (2004) Lipoxygenase pathways in atherosclerosis. Trends Cardiovasc Med 14:191–195PubMedCrossRefGoogle Scholar
  177. 177.
    Uhl J, Klan N, Rose M, Entian KD, Werz O, Steinhilber D (2002) The 5-lipoxygenase promoter is regulated by DNA methylation. J Biol Chem 277:4374–4379PubMedCrossRefGoogle Scholar
  178. 178.
    Liu C, Xu D, Sjöberg J, Forsell P, Björkholm M, Claesson HE (2004) Transcriptional regulation of 15-lipoxygenase expression by promoter methylation. Exp Cell Res 297:61–67PubMedCrossRefGoogle Scholar
  179. 179.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356PubMedCrossRefGoogle Scholar
  180. 180.
    Wolfe MS (2007) When loss is gain: reduced presenilin proteolytic function leads to increased Aβ42/Aβ40. EMBO Rep 8:136–140PubMedCrossRefGoogle Scholar
  181. 181.
    West RL, Lee JM, Maroun LE (1995) Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J Mol Neurosci 6:141–146PubMedCrossRefGoogle Scholar
  182. 182.
    Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M (1999) Reduction with age in methylcytosine in the promoter region -224 ~ -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res 70:288–292PubMedCrossRefGoogle Scholar
  183. 183.
    Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S (2005) S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 28:195–204PubMedCrossRefGoogle Scholar
  184. 184.
    Abdolmaleky HM, Thiagalingam S, Wilcox M (2005) Genetics and epigenetics in major psychiatric disorders: dilemmas, achievements, applications, and future scope. Am J Pharmacogenomics 5:149–160PubMedCrossRefGoogle Scholar
  185. 185.
    Grayson DR, Jia X, Chen Y, Sharma RP, Michell CP, Guidotti A, Costa E (2005) Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA 102:9341–9346PubMedCrossRefGoogle Scholar
  186. 186.
    Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, Smith CL, Shafa R, Aeali B, Carnevale J, Pan H, Papageorgis P, Ponte JF, Sivaraman V, Tsuang MT, Thiagalingam S (2006) Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 15:3132–3145PubMedCrossRefGoogle Scholar
  187. 187.
    Shimabukuro M, Sasaki T, Imamura A, Tsujita T, Fuke C, Umekage T, Tochigi M, Hiramatsu K, Miyazaki T, Oda T, Sugimoto J, Jinno Y, Okazaki Y (2007) Global hypomethylation of peripheral leukocyte DNA in male patients with schizophrenia: a potential link between epigenetics and schizophrenia. J Psychiatr Res 41:1042–1046PubMedCrossRefGoogle Scholar
  188. 188.
    Ingrosso D, Cimmino A, Perna AF, Masella L, De Santo NG, De Bonis ML, Vacca M, D’Esposito M, D’Urso M, Galetti P, Zappia V (2003) Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinemia in patients with uraemia. Lancet 361:1693–1699PubMedCrossRefGoogle Scholar
  189. 189.
    Richardson B (2003) DNA methylation and autoimmune disease. Clin Immunol 109:72–79PubMedCrossRefGoogle Scholar
  190. 190.
    Sekigawa I, Kawasaki M, Ogasawara H, Kaneda K, Kaneko H, Takasaki Y, Ogawa H (2006) DNA methylation: its contribution to systemic lupus erythematosus. Clin Exp Med 6:99–106PubMedCrossRefGoogle Scholar
  191. 191.
    Neidhart M, Rethage J, Kuchen S, Künzler P, Crowl RM, Billingham ME, Gay RE, Gay S (2000) Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum 43:2634–2647PubMedCrossRefGoogle Scholar
  192. 192.
    Nile CJ, Read RC, Akil M, Duff GW, Wilson AG (2008) Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum 58:2686–2693PubMedCrossRefGoogle Scholar
  193. 193.
    Suuronen T, Nuutinen T, Ryhänen T, Kaarniranta K, Salminen A (2007) Epigenetic regulation of clusterin/apolipoprotein J expression in retinal pigment epithelial cells. Biochem Biophys Res Commun 357:397–401PubMedCrossRefGoogle Scholar
  194. 194.
    Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358:2606–2617PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Division of Biochemical ToxicologyNational Center for Toxicological ResearchJeffersonUSA

Personalised recommendations