Functional aspects of protein flexibility

  • Kaare Teilum
  • Johan G. Olsen
  • Birthe B. KragelundEmail author


Proteins are dynamic entities, and they possess an inherent flexibility that allows them to function through molecular interactions within the cell, among cells and even between organisms. Appreciation of the non-static nature of proteins is emerging, but to describe and incorporate this into an intuitive perception of protein function is challenging. Flexibility is of overwhelming importance for protein function, and the changes in protein structure during interactions with binding partners can be dramatic. The present review addresses protein flexibility, focusing on protein–ligand interactions. The thermodynamics involved are reviewed, and examples of structure-function studies involving experimentally determined flexibility descriptions are presented. While much remains to be understood about protein flexibility, it is clear that it is encoded within their amino acid sequence and should be viewed as an integral part of their structure.


Protein dynamics Protein–ligand interactions Protein flexibility Flexible protein recognition model Entropy Intrinsically disordered proteins 



We thank Signe Mathiasen for expert technical and graphical assistance with the creation of figures. We are grateful to Stine Falsig Pedersen, Kim Vilbour Andersen and Magnus Kjærgaard for valuable and sound comments and critique. This is a contribution from the SBiN-Lab and is financed in part by the Danish Natural Research council (no. 21040604 BBK; no. 272060251 KTE).


  1. 1.
    Dodson G, Verma CS (2006) Protein flexibility: its role in structure and mechanism revealed by molecular simulations. Cell Mol Life Sci 63:207–219PubMedCrossRefGoogle Scholar
  2. 2.
    Dodson GG, Lane DP, Verma CS (2008) Molecular simulations of protein dynamics: new windows on mechanisms in biology. EMBO Rep 9:144–150PubMedCrossRefGoogle Scholar
  3. 3.
    Maragakis P, Lindorff-Larsen K, Eastwood MP, Dror RO, Klepeis JL, Arkin IT, Jensen MO, Xu H, Trbovic N, Friesner RA, Iii AG, Shaw DE (2008) Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins. J Phys Chem B 112:6155–6158PubMedCrossRefGoogle Scholar
  4. 4.
    Linderstrøm-Lang K (1955) Deuterium exchange between peptides and water. Chem Soc Spec Publ 2:1–20Google Scholar
  5. 5.
    Hvidt A (1955) Deuterium exchange between ribonuclease and water. Biochim Biophys Acta 18:306–308PubMedCrossRefGoogle Scholar
  6. 6.
    Kim KS, Fuchs JA, Woodward CK (1993) Hydrogen exchange identifies native-state motional domains important in protein folding. Biochemistry 32:9600–9608PubMedCrossRefGoogle Scholar
  7. 7.
    Kim KS, Woodward C (1993) Protein internal flexibility and global stability: effect of urea on hydrogen exchange rates of bovine pancreatic trypsin inhibitor. Biochemistry 32:9609–9613PubMedCrossRefGoogle Scholar
  8. 8.
    Mayo SL, Baldwin RL (1993) Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A. Science 262:873–876PubMedCrossRefGoogle Scholar
  9. 9.
    Bai Y, Milne JS, Mayne L, Englander SW (1995) Protein stability parameters measured by hydrogen exchange. Proteins 20:4–14CrossRefGoogle Scholar
  10. 10.
    Luque I, Freire E (2000) Structural stability of binding sites: consequences for binding affinity and allosteric effects. Proteins S4:63–71CrossRefGoogle Scholar
  11. 11.
    Sinha N, Nussinov R (2001) Point mutations and sequence variability in proteins: redistributions of preexisting populations. Proc Natl Acad Sci USA 98:3139–3144PubMedCrossRefGoogle Scholar
  12. 12.
    Linderstrøm-Lang K (1949) Structure and enzymatic break-down of proteins. Cold Spring Harb Symp Quant Biol 14:117–129Google Scholar
  13. 13.
    Bothner B, Dong XF, Bibbs L, Johnson JE, Siuzdak G (1998) Evidence of viral capsid dynamics using limited proteolysis and mass spectrometry. J Biol Chem 273:673–676PubMedCrossRefGoogle Scholar
  14. 14.
    Fontana A, Fassina G, Vita C, Dalzoppo D, Zamai M, Zambonin M (1986) Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry 25:1847–1851PubMedCrossRefGoogle Scholar
  15. 15.
    Falconi M, Parrilli L, Battistoni A, Desideri A (2002) Flexibility in monomeric Cu, Zn superoxide dismutase detected by limited proteolysis and molecular dynamics simulation. Proteins 47:513–520PubMedCrossRefGoogle Scholar
  16. 16.
    Jomain JB, Tallet E, Broutin I, Hoos S, van Agthoven J, Ducruis A, Kelly PA, Kragelund BB, England P, Goffin V (2007) Structural and thermodynamic bases for the design of pure prolactin receptor antagonists: X-ray structure of Del1-9-G129R-hPRL. J Biol Chem 282:33118–33131PubMedCrossRefGoogle Scholar
  17. 17.
    Schoichet BK, Baase WA, Kuroki R, Matthews BW (1995) A relationship between protein stability and protein function. Proc Natl Acad Sci USA 92:452–456CrossRefGoogle Scholar
  18. 18.
    Gilli P, Ferretti V, Gilli G, Borea PA (1994) Enthalpy–entropy compensation in drug-receptor binding. J Phys Chem 98:1515–1518CrossRefGoogle Scholar
  19. 19.
    Myszka DG, Sweet RW, Hensley P, Brigham-Burke M, Kwong PD, Hendrickson WA, Wyatt R, Sodroski J, Doyle ML (2000) Energetics of the HIV gp120-CD4 binding reaction. Proc Natl Acad Sci USA 97:9026–9031PubMedCrossRefGoogle Scholar
  20. 20.
    Moose RE, Clemente JC, Jackson LR, Ngo M, Wooten K, Chang R, Bennett A, Chakraborty S, Yowell CA, Dame JB, Agbandje-McKenna M, Dunn BM (2007) Analysis of binding interactions of pepsin inhibitor-3 to mammalian and malarial aspartic proteases. Biochemistry 46:14198–14205PubMedCrossRefGoogle Scholar
  21. 21.
    Stites WE (1997) Protein–protein interactions: interface structure, binding thermodynamics, and mutational analysis. Chem Rev 97:1233–1250PubMedCrossRefGoogle Scholar
  22. 22.
    Brady GP, Sharp KA (1997) Entropy in protein folding and in protein–protein interactions. Curr Opin Struct Biol 7:215–221PubMedCrossRefGoogle Scholar
  23. 23.
    Lu B, Wong CF (2005) Direct estimation of entropy loss due to reduced translational and rotational motions upon molecular binding. Biopolymers 79:277–285PubMedCrossRefGoogle Scholar
  24. 24.
    Yu YB, Privalov PL, Hodges RS (2001) Contribution of translational and rotational motions to molecular association in aqueous solution. Biophys J 81:1632–1642PubMedCrossRefGoogle Scholar
  25. 25.
    Tamura A, Privalov PL (1997) The entropy cost of protein association. J Mol Biol 273:1048–1060PubMedCrossRefGoogle Scholar
  26. 26.
    D’Aquino JA, Gomez J, Hilser VJ, Lee KH, Amzel LM, Freire E (1996) The magnitude of the backbone conformational entropy change in protein folding. Proteins 25:143–156PubMedGoogle Scholar
  27. 27.
    Lee KH, Xie D, Freire E, Amzel LM (1994) Estimation of changes in side chain configurational entropy in binding and folding: general methods and application to helix formation. Proteins 20:68–84PubMedCrossRefGoogle Scholar
  28. 28.
    Conte LL, Chothia C, Janin J (1999) The atomic structure of protein–protein recognition sites. J Mol Biol 285:2177–2198PubMedCrossRefGoogle Scholar
  29. 29.
    Baldwin RL (2007) Energetics of protein folding. J Mol Biol 371:283–301PubMedCrossRefGoogle Scholar
  30. 30.
    Spolar RS, Record MT Jr (1994) Coupling of local folding to site-specific binding of proteins to DNA. Science 263:777–784PubMedCrossRefGoogle Scholar
  31. 31.
    Palmer AGIII (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640PubMedCrossRefGoogle Scholar
  32. 32.
    Jarymowycz VA, Stone MJ (2006) Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 106:1624–1671PubMedCrossRefGoogle Scholar
  33. 33.
    Akke M, Bruschweiler R, Palmer AG (1993) NMR order parameters and free-energy-an analytical approach and its application to cooperative Ca2+ binding by calbindin-D(9k). J Am Chem Soc 115:9832–9833CrossRefGoogle Scholar
  34. 34.
    Yang DW, Kay LE (1996) Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J Mol Biol 263:369–382PubMedCrossRefGoogle Scholar
  35. 35.
    Goh C-S, Milburn D, Gerstein M (2004) Conformational changes associated with protein–protein interactions. Curr Opin Struct Biol 14:104–109PubMedCrossRefGoogle Scholar
  36. 36.
    Homans SW (2007) Water, water everywhere—except where it matters? Drug DiscovToday 12:534–539Google Scholar
  37. 37.
    Frederick KK, Kranz JK, Wand AJ (2006) Characterization of the backbone and side chain dynamics of the CaM-CaMKIp complex reveals microscopic contributions to protein conformational entropy. Biochemistry 45:9841–9848PubMedCrossRefGoogle Scholar
  38. 38.
    Bingham RJ, Findlay JBC, Hsieh SY, Kalverda AP, Kjeliberg A, Perazzolo C, Phillips SEV, Seshadri K, Trinh CH, Turnbull WB, Bodenhausen G, Homans SW (2004) Thermodynamics of binding of 2-methoxy-3-isopropylpyrazine and 2-methoxy-3-isobutylpyrazine to the major urinary protein. J Am Chem Soc 126:1675–1681PubMedCrossRefGoogle Scholar
  39. 39.
    Zidek L, Novotny MV, Stone MJ (1999) Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat Struct Biol 6:1118–1121PubMedCrossRefGoogle Scholar
  40. 40.
    Frederick KK, Marlow MS, Valentine KG, Wand AJ (2007) Conformational entropy in molecular recognition by proteins. Nature 448:325–329PubMedCrossRefGoogle Scholar
  41. 41.
    Loh AP, Pawley N, Nicholson LK, Oswald RE (2001) An increase in side chain entropy facilitates effector binding: NMR characterization of the side chain methyl group dynamics is Cdc42Hs. Biochemistry 40:4590–4600PubMedCrossRefGoogle Scholar
  42. 42.
    Grünberg R, Nilges M, Leckner J (2006) Flexibility and conformational entropy in protein–protein binding. Structure 14:683–693PubMedCrossRefGoogle Scholar
  43. 43.
    MacRaild CA, Daranas AH, Bronowska A, Homans SW (2007) Global changes in local protein dynamics reduce the entropic cost of carbohydrate binding in the arabinose-binding protein. J Mol Biol 368:822–832PubMedCrossRefGoogle Scholar
  44. 44.
    Park S, Saven JG (2005) Statistical and molecular dynamics studies of buried waters in globular proteins. Proteins 60:450–463PubMedCrossRefGoogle Scholar
  45. 45.
    Sonavane S, Chakrabarti P (2008) Cavities and atomic packing in protein structures and interfaces. PLoS Comp Biol 4:e1000188CrossRefGoogle Scholar
  46. 46.
    Reichmann D, Phillip Y, Carmi A, Schreiber G (2008) On the contribution of water-mediated interactions to protein-complex stability. Biochemistry 47:1051–1060PubMedCrossRefGoogle Scholar
  47. 47.
    Li Z, Lazaridis T (2003) Thermodynamic contributions of the ordered water molecule in HIV-1 protease. J Am Chem Soc 125:6636–6637PubMedCrossRefGoogle Scholar
  48. 48.
    Li Z, Lazaridis T (2005) The effect of water displacement on binding thermodynamics: concanavalin A. J Phys Chem B 109:662–670PubMedCrossRefGoogle Scholar
  49. 49.
    Bahadur RP, Zacharias M (2008) The interface of protein–protein complexes: analysis of contacts and prediction of interactions. Cell Mol Life Sci 65:1059–1072PubMedCrossRefGoogle Scholar
  50. 50.
    Janin J, Rodier F, Chakrabarti P, Bahadur RP (2007) Macromolecular recognition in the Protein Data Bank. Acta Crystallogr D Biol Crystallogr 63:1–8PubMedCrossRefGoogle Scholar
  51. 51.
    Ponstingl H, Henrick K, Thornton JM (2000) Discriminating between homodimeric and monomeric proteins in the crystalline state. Proteins 41:47–57PubMedCrossRefGoogle Scholar
  52. 52.
    Fischer E (1894) Einfluss der configuration auf die wirkung der enzyme. Ber Dtsch Chem Ges 27:2985–2993CrossRefGoogle Scholar
  53. 53.
    Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44:98–104PubMedCrossRefGoogle Scholar
  54. 54.
    Monod J, Wyman J, Changeux J (1965) On the allosteric transitions: a plausible model. J Mol Biol 12:88–118PubMedCrossRefGoogle Scholar
  55. 55.
    Koshland DEJ, Nemethy G, Filmer D (1966) Comparison of experimental binding data and theoretical model in proteins containing subunits. Biochemistry 5:365–385PubMedCrossRefGoogle Scholar
  56. 56.
    Bosshard HR (2001) Molecular recognition by induced fit: how fit is the concept? News Physiol Sci 16:171–173PubMedGoogle Scholar
  57. 57.
    Baldwin RL (1995) The nature of protein folding pathways: the classical versus the new view. J Biomol NMR 5:103–109PubMedCrossRefGoogle Scholar
  58. 58.
    Dill KA, Chan HS (1997) From Levinthal to pathways to funnels. Nat Struct Biol 4:10–19PubMedCrossRefGoogle Scholar
  59. 59.
    Lazaridis T, Karplus M (1997) “New view” of protein folding reconciled with the old through multiple unfolding simulations. Science 278:1928–1931PubMedCrossRefGoogle Scholar
  60. 60.
    Leopold PE, Montal M, Onuchic JN (1992) Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc Natl Acad Sci USA 89:8721–8725PubMedCrossRefGoogle Scholar
  61. 61.
    Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21:167–195PubMedCrossRefGoogle Scholar
  62. 62.
    Kumar S, Ma B, Tsai CJ, Sinha N, Nussinov R (2000) Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci 9:10–19PubMedGoogle Scholar
  63. 63.
    Rejto PA, Verkhovker GM (1996) Unraveling principles of lead discovery: from unfrustrated energy landscapes to novel molecular anchors. Proc Natl Acad Sci USA 93:8945–8950PubMedCrossRefGoogle Scholar
  64. 64.
    Tsai CJ, Kumar S, Ma B, Nussinov R (1999) Folding funnels, binding funnels, and protein function. Protein Sci 8:1181–1190PubMedCrossRefGoogle Scholar
  65. 65.
    Freire E (1999) The propagation of binding interactions to remote sites in proteins: analysis of the binding of the monoclonal antibody D1.3 to lysozyme. Proc Natl Acad Sci USA 98:10118–10122CrossRefGoogle Scholar
  66. 66.
    Volkman BF, Lipson D, Wemmer DE, Kern D (2001) Two-state allosteric behavior in a single-domain signaling protein. Science 291:2429–2433PubMedCrossRefGoogle Scholar
  67. 67.
    Barak R, Eisenbach M (1992) Correlation between phosphorylation of the chemotaxis protein CheY and its activity at the flagellar motor. Biochemistry 31:1821–1826PubMedCrossRefGoogle Scholar
  68. 68.
    Springael JY, de Poorter C, Deupi X, Van Durme J, Pardo L, Parmentier M (2007) The activation mechanism of chemokine receptor CCR5 involves common structural changes but a different network of interhelical interactions relative to rhodopsin. Cell Signal 19:1446–1456PubMedCrossRefGoogle Scholar
  69. 69.
    Grünberg R, Leckner J, Nilges M (2004) Complementarity of structure ensembles in protein–protein binding. Structure 12:2125–2136PubMedCrossRefGoogle Scholar
  70. 70.
    Northrup SH, Erikson HP (1992) Kinetics of protein-protein association explained by Brownian dynamics computer simulation. Proc Natl Acad Sci USA 89:3338–3342PubMedCrossRefGoogle Scholar
  71. 71.
    Tang C, Iwahara J, Clore GM (2006) Visualization of transient encounter complexes in protein–protein association. Nature 444:383–386PubMedCrossRefGoogle Scholar
  72. 72.
    Okazaki K, Takada S (2008) Dynamic energy landscape view of coupled binding and protein conformational change: induced-fit versus population-shift mechanisms. Proc Natl Acad Sci USA 105:11182–11187PubMedCrossRefGoogle Scholar
  73. 73.
    Kern D, Eisenmesser EZ, Wolf-Watz M (2005) Enzyme dynamics during catalysis measured by NMR spectroscopy. Methods Enzymol 394:507–524PubMedCrossRefGoogle Scholar
  74. 74.
    Ishima R, Torchia DA (2000) Protein dynamics from NMR. Nat Struct Biol 7:740–743PubMedCrossRefGoogle Scholar
  75. 75.
    Henzler-Wildman KA, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972PubMedCrossRefGoogle Scholar
  76. 76.
    Mittag T, Forman-Kay JD (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17:3–14PubMedCrossRefGoogle Scholar
  77. 77.
    Halle B (2004) Biomolecular cryocrystallography: structural changes during flash-cooling. Proc Natl Acad Sci USA 101:4793–4798PubMedCrossRefGoogle Scholar
  78. 78.
    Carlsson GH, Nicholls P, Svistunenko D, Berglund GI, Hajdu J (2005) Complexes of horseradish peroxidase with formate, acetate, and carbon monoxide. Biochemistry 44:635–642PubMedCrossRefGoogle Scholar
  79. 79.
    James LC, Roversi P, Tawfik DS (2003) Antibody multispecificity mediated by conformational diversity. Science 299:1362–1367PubMedCrossRefGoogle Scholar
  80. 80.
    James LC, Tawfik DS (2003) Conformational diversity and protein evolution—a 60-year-old hypothesis revisited. Trends Biochem Sci 28:361–368PubMedCrossRefGoogle Scholar
  81. 81.
    Hayakawa N, Kasahara T, Hasegawa D, Yoshimura K, Murakami M, Kouyama T (2008) Effect of xenon binding to a hydrophobic cavity on the proton pumping cycle in bacteriorhodopsin. J Mol Biol 384:812–823PubMedCrossRefGoogle Scholar
  82. 82.
    de Sanctis D, Dewilde S, Pesce A, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (2004) Mapping protein matrix cavities in human cytoglobin through Xe atom binding. Biochem Biophys Res Commun 316:1217–1221PubMedCrossRefGoogle Scholar
  83. 83.
    Song G, Jernigan RL (2007) vGNM: a better model for understanding the dynamics of proteins in crystals. J Mol Biol 369:880–893PubMedCrossRefGoogle Scholar
  84. 84.
    Nodet G, Abergel D (2007) An overview of recent developments in the interpretation and prediction of fast internal protein dynamics. Eur Biophys J 36:985–993PubMedCrossRefGoogle Scholar
  85. 85.
    Mueller GA, Pari K, DeRose EF, Kirby TW, London RE (2004) Backbone dynamics of the RNase H domain of HIV-1 reverse transcriptase. Biochemistry 43:9332–9342PubMedCrossRefGoogle Scholar
  86. 86.
    Xu Y, Colletier JP, Weik M, Jiang H, Moult J, Silman I, Sussman JL (2008) Flexibility of aromatic residues in the active-site gorge of acetylcholinesterase: X-ray versus molecular dynamics. Biophys J 95:2500–2511PubMedCrossRefGoogle Scholar
  87. 87.
    Kagawa TF, Cooney JC, Baker HM, McSweeney S, Liu M, Gubba S, Musser JM, Baker EN (2000) Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: an integrin-binding cysteine protease. Proc Natl Acad Sci USA 97:2235–2240PubMedCrossRefGoogle Scholar
  88. 88.
    Wang C-C, Houng H-C, Chen C-L, Wang P-J, Kuo C-F, Lin Y-S, Wu J-J, Lin MT, Liu C-C, Huang W, Chuang W-J (2009) Solution structure and backbone dynamics of streptopain: insight into diverse substrate specificity. J Biol Chem. doi: 10.1074/jbc.M807624200
  89. 89.
    Han GW, Lee JY, Song HK, Chang C, Min K, Moon J, Shin DH, Kopka ML, Sawaya MR, Yuan HS, Kim TD, Choe J, Lim D, Moon HJ, Suh SW (2001) Structural basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography. J Mol Biol 308:263–278PubMedCrossRefGoogle Scholar
  90. 90.
    Lerche MH, Kragelund BB, Bech LM, Poulsen FM (1997) Barley lipid-transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands. Structure 15:291–306CrossRefGoogle Scholar
  91. 91.
    Lerche MH, Poulsen FM (1998) Solution structure of barley lipid transfer protein complexed with palmitate. Two different binding modes of palmitate in the homologous maize and barley nonspecific lipid transfer proteins. Protein Sci 7:2490–2498PubMedCrossRefGoogle Scholar
  92. 92.
    Lindberg MJ, Bystrom R, Boknas N, Andersen PM, Oliveberg M (2005) Systematically perturbed folding patterns of amyotrophic lateral sclerosis (ALS)-associated SOD1 mutants. Proc Natl Acad Sci USA 102:9754–9759PubMedCrossRefGoogle Scholar
  93. 93.
    Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331PubMedCrossRefGoogle Scholar
  94. 94.
    Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graphics Model 19:26–59CrossRefGoogle Scholar
  95. 95.
    Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645PubMedCrossRefGoogle Scholar
  96. 96.
    Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208PubMedCrossRefGoogle Scholar
  97. 97.
    Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384PubMedCrossRefGoogle Scholar
  98. 98.
    Uversky VN, Gillespie JR, Fink AL (2000) Why are natively unfolded proteins unstructured under physiologic conditions? Proteins 41:415–427PubMedCrossRefGoogle Scholar
  99. 99.
    Babu YS, Bugg CE, Cook WJ (1988) Structure of calmodulin refined at 2.2 Å resolution. J Mol Biol 204:191–204PubMedCrossRefGoogle Scholar
  100. 100.
    Barbato G, Ikura M, Kay LE, Pastor RW, Bax A (1992) Backbone dynamics of calmodulin studied by 15 N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31:5269–5278PubMedCrossRefGoogle Scholar
  101. 101.
    Hernández MA, Andreu JAJM (1986) Physicochemical characterization of the heat-stable microtubule-associated protein MAP2. Eur J Biochem 154:41–48PubMedCrossRefGoogle Scholar
  102. 102.
    Dosztányi Z, Sandor M, Tompa P, Simon I (2007) Prediction of protein disorder at the domain level. Curr Protein Pept Sci 8:161–171PubMedCrossRefGoogle Scholar
  103. 103.
    Ferron F, Longhi S, Canard B, Karlin D (2006) A practical overview of protein disorder prediction methods. Proteins 65:1–14PubMedCrossRefGoogle Scholar
  104. 104.
    Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9:S1CrossRefGoogle Scholar
  105. 105.
    Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533PubMedCrossRefGoogle Scholar
  106. 106.
    Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12:54–60PubMedCrossRefGoogle Scholar
  107. 107.
    Danielsson J, Liljedahl L, Bárány-Wallje E, Sønderby P, Hyltoft Kristensen L, Martinéz-Yamout MA, Dyson HJ, Wright PE, Poulsen FM, Mäler L, Gräslund A, Kragelund BB (2008) The intrinsically disordered RNR inhibitor Sml1 is a dynamic dimer. Biochemistry 47:13428–13437PubMedCrossRefGoogle Scholar
  108. 108.
    Fuxreiter M, Simon I (2002) Protein stability indicates divergent evolution of PD-(D/E)XK type II restriction endonucleases. Protein Sci 11:1978–1983PubMedCrossRefGoogle Scholar
  109. 109.
    Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN, Dunker AK (2005) Coupled folding and binding with [alpha]-helix-forming molecular recognition elements. Biochemistry 44:12454–12470PubMedCrossRefGoogle Scholar
  110. 110.
    Csizmok V, Bokor M, Banki P, Klement E, Medzihradszky KF, Friedrich P, Tompa K, Tompa P (2005) Primary contact sites in intrinsically unstructured proteins: the case of calpastatin and microtubule-associated protein 2. Biochemistry 44:3955–3964PubMedCrossRefGoogle Scholar
  111. 111.
    Kriwacki RW, Hengst L, Tennant L, Reed SI, Wright PE (1996) Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc Natl Acad Sci USA 93:11504–11509PubMedCrossRefGoogle Scholar
  112. 112.
    Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582PubMedCrossRefGoogle Scholar
  113. 113.
    Cortese MS, Uversky VN, Dunker AK (2008) Intrinsic disorder in scaffold proteins: getting more from less. Prog Biophys Mol Biol 98:85–106PubMedCrossRefGoogle Scholar
  114. 114.
    Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Obradovic Z, Kissinger CR, Villafranca JE (1998) Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 473–484Google Scholar
  115. 115.
    Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK (2002) Intrinsic Disorder in Cell-signaling and Cancer-associated Proteins. J Mol Biol 323:573–584PubMedCrossRefGoogle Scholar
  116. 116.
    Galea CA, Wang Y, Sivakolundu SG, Kriwacki RW (2008) Regulation of cell division by intrinsically unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry 47:7598–7609PubMedCrossRefGoogle Scholar
  117. 117.
    Bracken C, Carr PA, Cavanagh J, Palmer AGIII (1999) Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA. J Mol Biol 285:2133–2146PubMedCrossRefGoogle Scholar
  118. 118.
    Meador WE, Means AR, Quiocho FA (1992) Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science 257:1251–1255PubMedCrossRefGoogle Scholar
  119. 119.
    Choo Y, Schwabe JW (1998) All wrapped up. Nat Struct Biol 5:253–255PubMedCrossRefGoogle Scholar
  120. 120.
    Russo AA, Jeffrey PD, Patten AK, Massague J, Pavletich NP (1996) Crystal structure of the p27Kip1 cyclin-dependent-kinase inibitor bound to the cyclin A-Cdk2 complex. Nature 382:325–331PubMedCrossRefGoogle Scholar
  121. 121.
    O’Neil KT, Hoess RH, DeGrado WF (1990) Design of DNA-binding peptides based on the leucine zipper motif. Science 249:774–778PubMedCrossRefGoogle Scholar
  122. 122.
    Benison G, Nyarko A, Barbar E (2006) Heteronuclear NMR identifies a nascent helix in intrinsically disordered dynein intermediate chain: implications for folding and dimerization. J Mol Biol 362:1082–1093PubMedCrossRefGoogle Scholar
  123. 123.
    Jensen GA, Andersen OM, Bonvin AM, Bjerrum-Bohr I, Etzeroth M, Thøgersen HC, O’Shea C, Poulsen FM, Kragelund BB (2006) Binding site structure of one LRP-RAP complex: implications for a common ligand-receptor binding motif. J Mol Biol 362:700–716PubMedCrossRefGoogle Scholar
  124. 124.
    Smith BO, Downing AK, Driscoll PC, Dudgeon TJ, Campbell ID (1995) The solution structure and backbone dynamics of the fibronectin type I and epidermal growth factor-like pair of modules of tissue-type plasminogen activator. Structure 3:823–833PubMedCrossRefGoogle Scholar
  125. 125.
    Conte MR, Grüne T, Ghuman J, Kelly G, Ladas A, Matthews S, Curry S (2000) Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. EMBO J 19:3132–3141PubMedCrossRefGoogle Scholar
  126. 126.
    Shamoo Y, Krueger U, Rice LM, Williams KR, Steitz TA (1997) Crystal structure of the two RNA binding domains of human hnRNP A1 at 1.75 Å resolution. Nat Struct Biol 4:215–222PubMedCrossRefGoogle Scholar
  127. 127.
    Flores SC, Keating KS, Painter J, Morcos F, Nguyen K, Merritt EA, Kuhn LA, Gerstein MB (2008) HingeMaster: normal mode hinge prediction approach and integration of complementary predictors. Proteins 73:299–319PubMedCrossRefGoogle Scholar
  128. 128.
    Keating KS, Flores SC, Gerstein MB, Kuhn LA (2009) StoneHinge: hinge prediction by network analysis of individual protein structures. Protein Sci 18:359–371PubMedCrossRefGoogle Scholar
  129. 129.
    Emekli U, Schneidman-Duhovny D, Wolfson HJ, Nussinov R, Haliloglu T (2008) HingeProt: automated prediction of hinges in protein structures. Proteins 70:1219–1227PubMedCrossRefGoogle Scholar
  130. 130.
    Wells M, Tidow H, Rutherford TJ, Markwick P, Jensen MR, Mylonas E, Svergun DI, Blackledge M, Fersht AR (2008) Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proc Natl Acad Sci USA 105:5762–5767PubMedCrossRefGoogle Scholar
  131. 131.
    Magidovich E, Orr I, Fass D, Abdu U, Yifrach O (2007) Intrinsic disorder in the C-terminal domain of the Shaker voltage-activated K + channel modulates its interaction with scaffold proteins. Proc Natl Acad Sci USA 104:13022–13027PubMedCrossRefGoogle Scholar
  132. 132.
    Shoemaker BA, Portman JJ, Wolynes PG (2000) Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci USA 97:8868–8873PubMedCrossRefGoogle Scholar
  133. 133.
    Podlaha O, Zhang J (2003) Positive selection on protein-length in the evolution of a primate sperm ion channel. Proc Natl Acad Sci USA 100:12241–12246PubMedCrossRefGoogle Scholar
  134. 134.
    Bezanilla F, Armstrong CM (1977) Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol 70:549–566PubMedCrossRefGoogle Scholar
  135. 135.
    Bentrop D, Beyermann M, Wissmann R, Fakler B (2001) NMR structure of the “ball-and-chain” domain of KCNMB2, the beta 2-subunit of large conductance Ca2+—and voltage-activated potassium channels. J Biol Chem 276:42116–42121PubMedCrossRefGoogle Scholar
  136. 136.
    Liang Y, Kang CB, Yoon HS (2006) Molecular and structural characterization of the domain 2 of hepatitis C virus non-structural protein 5A. Mol Cell 31:13–20Google Scholar
  137. 137.
    Zhao X, Georgieve B, Chaves A, Domkin V, Ippel JH, Schleucher J, Wijmenga S, Thelander L, Rothstein R (2000) Mutational and structural analyses of the ribonucleotide reductase inhibitor Sml1 define its Rnr1 interaction domain whose inactivation allows suppression of mec1 and rad53 lethality. Mol Cell Biol 20:9076–9083PubMedCrossRefGoogle Scholar
  138. 138.
    Lummis SC, Beene DL, Lee LW, Lester HA, Broadhurst RW, Dougherty DA (2005) Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438:248–252PubMedCrossRefGoogle Scholar
  139. 139.
    Zheng J, Koblinski JE, Dutson LV, Feeney YB, Clevenger CV (2008) Prolyl isomerase cyclophilin A regulation of Janus-activated kinase 2 and the progression of human breast cancer. Cancer Res 68:7769–7778PubMedCrossRefGoogle Scholar
  140. 140.
    Mallis RJ, Brazin KN, Fulton DB, Andreotti AH (2002) Structural characterization of a proline-driven conformational switch within the Itk SH2 domain. Nat Struct Biol 9:900–905PubMedCrossRefGoogle Scholar
  141. 141.
    Lise A, Jones DT (2005) Sequence patterns associated with disordered regions in proteins. Proteins 58:144–150PubMedCrossRefGoogle Scholar
  142. 142.
    Mészáros B, Tompa P, Simon I, Dosztányi Z (2007) Molecular principles of the interactions of disordered proteins. J Mol Biol 372:549–561PubMedCrossRefGoogle Scholar
  143. 143.
    Schubert M, Labudde D, Oschkinat H, Schmieder P (2002) A software tool for the prediction of Xaa-Pro peptide bond conformations in proteins based on 13C chemical shift statistics. J Biomol NMR 24:149–154PubMedCrossRefGoogle Scholar
  144. 144.
    Lu KP, Finn G, Lee TH, Nicholson LK (2007) Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol 3:619–629PubMedCrossRefGoogle Scholar
  145. 145.
    Williamson JA, Miranker AD (2007) Direct detection of transient alpha-helical states in islet amyloid polypeptide. Protein Sci 16:110–117PubMedCrossRefGoogle Scholar
  146. 146.
    Grathwohl C, Wütherich K (1981) NMR Studies of the rates of proline cistrans isomerization in oligopeptides. Biopolymers 20:2623–2633CrossRefGoogle Scholar
  147. 147.
    Yuan X, Werner JM, Knott V, Handford PA, Campbell ID, Downing K (1998) Effects of proline cis-trans isomerization on TB domain secondary structure. Protein Sci 7:2127–2135PubMedCrossRefGoogle Scholar
  148. 148.
    Bosco DA, Eisenmesser EZ, Pochapsky S, Sundquist WI, Kern D (2002) Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. Proc Natl Acad Sci USA 99:5247–5252PubMedCrossRefGoogle Scholar
  149. 149.
    International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945CrossRefGoogle Scholar
  150. 150.
    Hunter T (1991) Protein kinase classification. Methods Enzymol 200:3–37PubMedCrossRefGoogle Scholar
  151. 151.
    Nadolski MJ, Linder ME (2007) Protein lipidation. FEBS J 274:5202–5210PubMedCrossRefGoogle Scholar
  152. 152.
    Suzuki T, Kitajima K, Inoue S, Inoue Y (1995) N-glycosylation/deglycosylation as a mechanism for the post-translational modification/remodification of proteins. Glycoconjug J 12:183–193CrossRefGoogle Scholar
  153. 153.
    Shi Y (2004) Caspase activation: revisiting the induced proximity model. Cell 117:855–858PubMedCrossRefGoogle Scholar
  154. 154.
    Hegde RS, Bernstein HD (2006) The surprising complexity of signal sequences. Trends Biochem Sci 31:563–571PubMedCrossRefGoogle Scholar
  155. 155.
    Ravid T, Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9:679–690PubMedCrossRefGoogle Scholar
  156. 156.
    Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucl Acids Res 32:1037–1049PubMedCrossRefGoogle Scholar
  157. 157.
    Johnson LN, Lewis RJ (2001) Structural Basis for Control by Phosphorylation. Chem Rev 101:2209–2242PubMedCrossRefGoogle Scholar
  158. 158.
    Mittag T, Orlicky S, Choy WY, Tang X, Lin H, Sicheri F, Kay LE, Tyers M, Forman-Kay JD (2008) Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc Natl Acad Sci USA 105:17772–17777PubMedCrossRefGoogle Scholar
  159. 159.
    Lange OF, Lakomek NA, Farés C, Schröder GF, Walter KF, Becker S, Meiler J, Grubmüller H, Griesinger C, de Groot BL (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 350:1471–1475CrossRefGoogle Scholar
  160. 160.
    Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366PubMedCrossRefGoogle Scholar
  161. 161.
    Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698:131–153PubMedGoogle Scholar
  162. 162.
    Jahn TR, Parker MJ, Homans SW, Radford SE (2006) Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Nat Struct Mol Biol 13:195–201PubMedCrossRefGoogle Scholar
  163. 163.
    Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913–916PubMedCrossRefGoogle Scholar
  164. 164.
    Coureux PD, Sweeney HL, Houdusse A (2004) Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J 23:4527–4537PubMedCrossRefGoogle Scholar
  165. 165.
    Coureux PD, Wells AL, Menetrey J, Yengo CM, Morris CA, Sweeney HL, Houdusse A (2003) A structural state of the myosin V motor without bound nucleotide. Nature 425:419–423PubMedCrossRefGoogle Scholar
  166. 166.
    Teilum K, Thormann T, Caterer NR, Poulsen HI, Jensen PH, Knudsen J, Kragelund BB, Poulsen FM (2005) Different secondary structure elements as scaffolds for protein folding transition states of two homologous four-helix bundles. Proteins Stuct Funct Genet 59:80–90CrossRefGoogle Scholar
  167. 167.
    Kragelund BB, Poulsen K, Andersen KV, Baldursson T, Kroll JB, Neergård TB, Jepsen J, Roepstorff P, Kristiansen K, Poulsen FM, Knudsen J (1999) Conserved residues and their role in the structure, function, and stability of acyl-coenzyme A binding protein. Biochemistry 38:2386–2394PubMedCrossRefGoogle Scholar
  168. 168.
    Camacho CJ, Kimuar SR, DeLisi C, Vajda S (2000) Kinetics of desolvation-mediated protein–protein binding. Biophys J 78:1094–1105PubMedCrossRefGoogle Scholar
  169. 169.
    Schreiber G (2002) Kinetic studies of protein–protein interactions. Curr Opin Struct Biol 12:41–47PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Kaare Teilum
    • 1
  • Johan G. Olsen
    • 1
  • Birthe B. Kragelund
    • 1
    Email author
  1. 1.Structural Biology and NMR Laboratory (SBiN-Lab), Department of BiologyUniversity of CopenhagenCopenhagen NDenmark

Personalised recommendations