Cellular and Molecular Life Sciences

, Volume 66, Issue 13, pp 2123–2134 | Cite as

Recent advances in understanding the structure and function of general transcription factor TFIID

  • Emilie Cler
  • Gabor Papai
  • Patrick Schultz
  • Irwin Davidson


The general transcription factor TFIID is a macromolecular complex comprising the TATA-binding protein (TBP) and a set of 13–14 TBP associated factors (TAFs). This review discusses biochemical, genetic and electron microscopic data acquired over the past years that provide a model for the composition, organisation and assembly of TFIID. We also revisit ideas on how TFIID is recruited to the promoters of active and possibly repressed genes. Recent observations show that recognition of acetylated and methylated histone residues by structural domains in several TAFs plays an important role. Finally, we highlight several genetic studies suggesting that TFIID is required for initiation of transcription, but not for maintaining transcription once a promoter is in an active state.


Drosophila Yeast Electron microscopy Chromatin Acetylation Methylation 



Work in the Davidson and Schultz laboratories is supported by grants from the CNRS, the INSERM, the Association pour la Recherche contre le Cancer and the Ligue Nationale et Départementale Région Alsace contre le Cancer. ID is an ‘équipe labélisée of the Ligue Nationale contre le Cancer, the Fondation pour la Recherche Médicale (FRM), the ANR the European SPINE programme QLG-CT-00988 and European Union grant RTN-2001-00026 and integrated programme grant EuTRACC. E. Cler was supported by a fellowship from the FRM, and G. Papai from the ANR.


  1. 1.
    Andrau JC, van de Pasch L, Lijnzaad P, Bijma T, Koerkamp MG, van de Peppel J, Werner M, Holstege FC (2006) Genome-wide location of the coactivator mediator: binding without activation and transient Cdk8 interaction on DNA. Mol Cell 22:179–192PubMedCrossRefGoogle Scholar
  2. 2.
    van Werven FJ, van Bakel H, van Teeffelen HA, Altelaar AF, Koerkamp MG, Heck AJ, Holstege FC, Timmers HT (2008) Cooperative action of NC2 and Mot1p to regulate TATA-binding protein function across the genome. Genes Dev 22:2359–2369PubMedCrossRefGoogle Scholar
  3. 3.
    Burley SK, Roeder RG (1996) Biochemistry and structural biology of transcription factor IID (TFIID). Annu Rev Biochem 65:769–799PubMedCrossRefGoogle Scholar
  4. 4.
    Albright SR, Tjian R (2000) TAFs revisited: more data reveal new twists and confirm old ideas. Gene 242:1–13PubMedCrossRefGoogle Scholar
  5. 5.
    Gangloff Y, Romier C, Thuault S, Werten S, Davidson I (2001) The histone fold is a key structural motif of transcription factor TFIID. Trends Biochem Sci 26:250–257PubMedCrossRefGoogle Scholar
  6. 6.
    Matangkasombut O, Auty R, Buratowski S (2004) Structure and function of the TFIID complex. Adv Protein Chem 67:67–92PubMedCrossRefGoogle Scholar
  7. 7.
    Thomas MC, Chiang CM (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41:105–178PubMedCrossRefGoogle Scholar
  8. 8.
    Timmers HT, Tora L (2005) SAGA unveiled trends. Biochem Sci 30:7–10CrossRefGoogle Scholar
  9. 9.
    Pijnappel WW, Timmers HT (2008) Dubbing SAGA unveils new epigenetic crosstalk. Mol Cell 29:152–154PubMedCrossRefGoogle Scholar
  10. 10.
    Baker SP, Grant PA (2007) The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 26:5329–5340PubMedCrossRefGoogle Scholar
  11. 11.
    Dynlacht BD, Hoey T, Tjian R (1991) Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 66:563–576PubMedCrossRefGoogle Scholar
  12. 12.
    Kokubo T, Takada R, Yamashita S, Gong DW, Roeder RG, Horikoshi M, Nakatani Y (1993) Identification of TFIID components required for transcriptional activation by upstream stimulatory factor. J Biol Chem 268:17554–17558PubMedGoogle Scholar
  13. 13.
    Brou C, Chaudhary S, Davidson I, Lutz Y, Wu J, Egly JM, Tora L, Chambon P (1993) Distinct TFIID complexes mediate the effect of different transcriptional activators. EMBO J 12:489–499PubMedGoogle Scholar
  14. 14.
    Moqtaderi Z, Yale JD, Struhl K, Buratowski S (1996) Yeast homologues of higher eukaryotic TFIID subunits. Proc Natl Acad Sci USA 93:14654–14658PubMedCrossRefGoogle Scholar
  15. 15.
    Poon D, Weil PA (1993) Immunopurification of yeast TATA-binding protein and associated factors. Presence of transcription factor IIIB transcriptional activity. J Biol Chem 268:15325–15328PubMedGoogle Scholar
  16. 16.
    Reese JC, Apone L, Walker SS, Griffin LA, Green MR (1994) Yeast TAFIIS in a multisubunit complex required for activated transcription. Nature 371:523–527PubMedCrossRefGoogle Scholar
  17. 17.
    Gangloff YG, Pointud JC, Thuault S, Carre L, Romier C, Muratoglu S, Brand M, Tora L, Couderc JL, Davidson I (2001) The TFIID components human TAF(II)140 and Drosophila BIP2 (TAF(II)155) are novel metazoan homologues of yeast TAF(II)47 containing a histone fold and a PHD finger. Mol Cell Biol 21:5109–5121PubMedCrossRefGoogle Scholar
  18. 18.
    Tora L (2002) A unified nomenclature for TATA box binding protein (TBP)-associated factors (TAFs) involved in RNA polymerase II transcription. Genes Dev 16:673–675PubMedCrossRefGoogle Scholar
  19. 19.
    Xie X, Kokubo T, Cohen SL, Mirza UA, Hoffmann A, Chait BT, Roeder RG, Nakatani Y, Burley SK (1996) Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 380:316–322PubMedCrossRefGoogle Scholar
  20. 20.
    Leurent C, Sanders S, Ruhlmann C, Mallouh V, Weil PA, Kirschner DB, Tora L, Schultz P (2002) Mapping histone fold TAFs within yeast TFIID. EMBO J 21:3424–3433PubMedCrossRefGoogle Scholar
  21. 21.
    Sanders SL, Garbett KA, Weil PA (2002) Molecular characterization of Saccharomyces cerevisiae TFIID. Mol Cell Biol 22:6000–6013PubMedCrossRefGoogle Scholar
  22. 22.
    Leurent C, Sanders SL, Demeny MA, Garbett KA, Ruhlmann C, Weil PA, Tora L, Schultz P (2004) Mapping key functional sites within yeast TFIID. EMBO J 23:719–727PubMedCrossRefGoogle Scholar
  23. 23.
    Birck C, Poch O, Romier C, Ruff M, Mengus G, Lavigne AC, Davidson I, Moras D (1998) Human TAF(II)28 and TAF(II)18 interact through a histone fold encoded by atypical evolutionary conserved motifs also found in the SPT3 family. Cell 94:239–249PubMedCrossRefGoogle Scholar
  24. 24.
    Werten S, Mitschler A, Romier C, Gangloff YG, Thuault S, Davidson I, Moras D (2002) Crystal structure of a subcomplex of human transcription factor TFIID formed by TATA binding protein-associated factors hTAF4 (hTAF(II)135) and hTAF12 (hTAF(II)20). J Biol Chem 277:45502–45509PubMedCrossRefGoogle Scholar
  25. 25.
    Romier C, James N, Birck C, Cavarelli J, Vivares C, Collart MA, Moras D (2007) Crystal structure, biochemical and genetic characterization of yeast and E. cuniculi TAF(II)5 N-terminal domain: implications for TFIID assembly. J Mol Biol 368:1292–1306PubMedCrossRefGoogle Scholar
  26. 26.
    Brand M, Leurent C, Mallouh V, Tora L, Schultz P (1999) Three-dimensional structures of the TAFII-containing complexes TFIID and TFTC. Science 286:2151–2153PubMedCrossRefGoogle Scholar
  27. 27.
    Andel F 3rd, Ladurner AG, Inouye C, Tjian R, Nogales E (1999) Three-dimensional structure of the human TFIID-IIA-IIB complex. Science 286:2153–2156PubMedCrossRefGoogle Scholar
  28. 28.
    Grob P, Cruse MJ, Inouye C, Peris M, Penczek PA, Tjian R, Nogales E (2006) Cryo-electron microscopy studies of human TFIID: conformational breathing in the integration of gene regulatory cues. Structure 14:511–520PubMedCrossRefGoogle Scholar
  29. 29.
    Papai G, Tripathi MK, Ruhlmann C, Werten S, Crucifix C, Weil PA, Schultz P (2009) Mapping the initiator binding TAF2 subunit in the structure of hydrated yeast TFIID Structure (in press)Google Scholar
  30. 30.
    Dikstein R, Zhou S, Tjian R (1996) Human TAFII 105 is a cell type-specific TFIID subunit related to hTAFII130. Cell 87:137–146PubMedCrossRefGoogle Scholar
  31. 31.
    Mengus G, May M, Carre L, Chambon P, Davidson I (1997) Human TAF(II)135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells. Genes Dev 11:1381–1395PubMedCrossRefGoogle Scholar
  32. 32.
    Thuault S, Gangloff YG, Kirchner J, Sanders S, Werten S, Romier C, Weil PA, Davidson I (2002) Functional analysis of the TFIID-specific yeast TAF4 (yTAF(II)48) reveals an unexpected organization of its histone-fold domain. J Biol Chem 277:45510–45517PubMedCrossRefGoogle Scholar
  33. 33.
    Guermah M, Tao Y, Roeder RG (2001) Positive and negative TAF(II) functions that suggest a dynamic TFIID structure and elicit synergy with traps in activator-induced transcription. Mol Cell Biol 21:6882–6894PubMedCrossRefGoogle Scholar
  34. 34.
    Liu WL, Coleman RA, Grob P, King DS, Florens L, Washburn MP, Geles KG, Yang JL, Ramey V, Nogales E, Tjian R (2008) Structural changes in TAF4b-TFIID correlate with promoter selectivity. Mol Cell 29:81–91PubMedCrossRefGoogle Scholar
  35. 35.
    Kaufmann J, Smale ST (1994) Direct recognition of initiator elements by a component of the transcription factor IID complex. Genes Dev 8:821–829PubMedCrossRefGoogle Scholar
  36. 36.
    Chen JL, Attardi LD, Verrijzer CP, Yokomori K, Tjian R (1994) Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79:93–105PubMedCrossRefGoogle Scholar
  37. 37.
    Singh MV, Bland CE, Weil PA (2004) Molecular and genetic characterization of a Taf1p domain essential for yeast TFIID assembly. Mol Cell Biol 24:4929–4942PubMedCrossRefGoogle Scholar
  38. 38.
    Liu D, Ishima R, Tong KI, Bagby S, Kokubo T, Muhandiram DR, Kay LE, Nakatani Y, Ikura M (1998) Solution structure of a TBP-TAF(II)230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 94:573–583PubMedCrossRefGoogle Scholar
  39. 39.
    Gegonne A, Weissman JD, Singer DS (2001) TAFII55 binding to TAFII250 inhibits its acetyltransferase activity. Proc Natl Acad Sci USA 98:12432–12437PubMedCrossRefGoogle Scholar
  40. 40.
    Pointud JC, Mengus G, Brancorsini S, Monaco L, Parvinen M, Sassone-Corsi P, Davidson I (2003) The intracellular localisation of TAF7L, a paralogue of transcription factor TFIID subunit TAF7, is developmentally regulated during male germ-cell differentiation. J Cell Sci 116:1847–1858PubMedCrossRefGoogle Scholar
  41. 41.
    Wright KJ, Marr MT 2nd, Tjian R (2006) TAF4 nucleates a core subcomplex of TFIID and mediates activated transcription from a TATA-less promoter. Proc Natl Acad Sci USA 103:12347–12352PubMedCrossRefGoogle Scholar
  42. 42.
    Walker AK, Rothman JH, Shi Y, Blackwell TK (2001) Distinct requirements for C. elegans TAF(II)s in early embryonic transcription. EMBO J 20:5269–5279PubMedCrossRefGoogle Scholar
  43. 43.
    Guven-Ozkan T, Nishi Y, Robertson SM, Lin R (2008) Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4. Cell 135:149–160PubMedCrossRefGoogle Scholar
  44. 44.
    Shimohata T, Nakajima T, Yamada M, Uchida C, Onodera O, Naruse S, Kimura T, Koide R, Nozaki K, Sano Y, Ishiguro H, Sakoe K, Ooshima T, Sato A, Ikeuchi T, Oyake M, Sato T, Aoyagi Y, Hozumi I, Nagatsu T, Takiyama Y, Nishizawa M, Goto J, Kanazawa I, Davidson I, Tanese N (2000) Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nat Genet 26:29–36PubMedCrossRefGoogle Scholar
  45. 45.
    Freiman RN, Tjian R (2002) Neurodegeneration. A glutamine-rich trail leads to transcription factors. Science 296:2149–2150PubMedCrossRefGoogle Scholar
  46. 46.
    Bhattacharya S, Takada S, Jacobson RH (2007) Structural analysis and dimerization potential of the human TAF5 subunit of TFIID. Proc Natl Acad Sci USA 104:1189–1194PubMedCrossRefGoogle Scholar
  47. 47.
    Durso RJ, Fisher AK, Albright-Frey TJ, Reese JC (2001) Analysis of TAF90 mutants displaying allele-specific and broad defects in transcription. Mol Cell Biol 21:7331–7344PubMedCrossRefGoogle Scholar
  48. 48.
    Mohan IW Jr, Scheer E, Wendling O, Metzger D, Tora L (2003) TAF10 (TAF(II)30) is necessary for TFIID stability and early embryogenesis in mice. Mol Cell Biol 23:4307–4318PubMedCrossRefGoogle Scholar
  49. 49.
    Metzger D, Scheer E, Soldatov A, Tora L (1999) Mammalian TAF(II)30 is required for cell cycle progression and specific cellular differentiation programmes. EMBO J 18:4823–4834PubMedCrossRefGoogle Scholar
  50. 50.
    Tatarakis A, Margaritis T, Martinez-Jimenez CP, Kouskouti A, Mohan WS 2nd, Haroniti A, Kafetzopoulos D, Tora L, Talianidis I (2008) Dominant and redundant functions of TFIID involved in the regulation of hepatic genes. Mol Cell 31:531–543PubMedCrossRefGoogle Scholar
  51. 51.
    Mengus G, Fadloun A, Kobi D, Thibault C, Perletti L, Michel I, Davidson I (2005) TAF4 inactivation in embryonic fibroblasts activates TGFbeta signalling and autocrine growth. EMBO J 24:2753–2767PubMedCrossRefGoogle Scholar
  52. 52.
    Chalkley GE, Verrijzer CP (1999) DNA binding site selection by RNA polymerase II TAFs: a TAF(II)250-TAF(II)150 complex recognizes the initiator. EMBO J 18:4835–4845PubMedCrossRefGoogle Scholar
  53. 53.
    Gegonne A, Weissman JD, Lu H, Zhou M, Dasgupta A, Ribble R, Brady JN, Singer DS (2008) TFIID component TAF7 functionally interacts with both TFIIH and P-TEFb. Proc Natl Acad Sci USA 105:5367–5372PubMedCrossRefGoogle Scholar
  54. 54.
    Gegonne A, Weissman JD, Zhou M, Brady JN, Singer DS (2006) TAF7: a possible transcription initiation check-point regulator. Proc Natl Acad Sci USA 103:602–607PubMedCrossRefGoogle Scholar
  55. 55.
    Hiller M, Lin T-Y, Wood C, Fuller MT (2001) Developmental regulation of transcription by a tissue-specific TAF homolog. Genes Dev 15:1021–1030PubMedCrossRefGoogle Scholar
  56. 56.
    Hiller M, Chen X, Pringle MJ, Suchorolski M, Sancak Y, Viswanathan S, Bolival B, Lin TY, Marino S, Fuller MT (2004) Testis-specific TAF homologs collaborate to control a tissue-specific transcription program. Development 131:5297–5308PubMedCrossRefGoogle Scholar
  57. 57.
    Chen X, Hiller M, Sancak Y, Fuller MT (2005) Tissue-specific TAFs counteract Polycomb to turn on terminal differentiation. Science 310:869–872PubMedCrossRefGoogle Scholar
  58. 58.
    Wang PJ, McCarrey JR, Yang F, Page DC (2001) An abundance of X-linked genes expressed in spermatogonia. Nat Genet 27:422–426PubMedCrossRefGoogle Scholar
  59. 59.
    Wang PJ, Page DC (2002) Functional substitution for TAF(II)250 by a retroposed homolog that is expressed in human spermatogenesis. Hum Mol Genet 11:2341–2346PubMedCrossRefGoogle Scholar
  60. 60.
    Burley SK (1996) The TATA box binding protein. Curr Opin Struct Biol 6:69–75PubMedCrossRefGoogle Scholar
  61. 61.
    Shen WC, Green MR (1997) Yeast TAF(II)145 functions as a core promoter selectivity factor, not a general coactivator. Cell 90(4):615–624PubMedCrossRefGoogle Scholar
  62. 62.
    Oelgeschlager T, Chiang CM, Roeder RG (1996) Topology and reorganization of a human TFIID-promoter complex. Nature 382:735–738PubMedCrossRefGoogle Scholar
  63. 63.
    Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Annu Rev Biochem 72:449–479PubMedCrossRefGoogle Scholar
  64. 64.
    Kadonaga JT (2002) The DPE, a core promoter element for transcription by RNA polymerase II. Exp Mol Med 34:259–264PubMedGoogle Scholar
  65. 65.
    Juven-Gershon T, Hsu JY, Theisen JW, Kadonaga JT (2008) The RNA polymerase II core promoter - the gateway to transcription. Curr Opin Cell Biol 20:253–259PubMedCrossRefGoogle Scholar
  66. 66.
    Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engstrom PG, Frith MC, Forrest AR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K, Mottagui-Tabar S, Arner P, Chesi A, Gustincich S, Persichetti F, Suzuki H, Grimmond SM, Wells CA, Orlando V, Wahlestedt C, Liu ET, Harbers M, Kawai J, Bajic VB, Hume DA, Hayashizaki Y (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38:626–635PubMedCrossRefGoogle Scholar
  67. 67.
    Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA (2007) Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 8:424–436PubMedCrossRefGoogle Scholar
  68. 68.
    Gill G, Pascal E, Tseng ZH, Tjian R (1994) A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc Natl Acad Sci USA 91:192–196PubMedCrossRefGoogle Scholar
  69. 69.
    Rojo-Niersbach E, Furukawa T, Tanese N (1999) Genetic dissection of hTAF(II)130 defines a hydrophobic surface required for interaction with glutamine-rich activators. J Biol Chem 274:33778–33784PubMedCrossRefGoogle Scholar
  70. 70.
    Asahara H, Santoso B, Guzman E, Du K, Cole PA, Davidson I, Montminy M (2001) Chromatin-dependent cooperativity between constitutive and inducible activation domains in CREB. Mol Cell Biol 21:7892–7900PubMedCrossRefGoogle Scholar
  71. 71.
    Garbett KA, Tripathi MK, Cencki B, Layer JH, Weil PA (2007) Yeast TFIID serves as a coactivator for Rap1p by direct protein-protein interaction. Mol Cell Biol 27:297–311PubMedCrossRefGoogle Scholar
  72. 72.
    Reeves WM, Hahn S (2005) Targets of the Gal4 transcription activator in functional transcription complexes. Mol Cell Biol 25:9092–9102PubMedCrossRefGoogle Scholar
  73. 73.
    Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040PubMedCrossRefGoogle Scholar
  74. 74.
    Suganuma T, Workman JL (2008) Crosstalk among histone modifications. Cell 135:604–607PubMedCrossRefGoogle Scholar
  75. 75.
    Jacobson RH, Ladurner AG, King DS, Tjian R (2000) Structure and function of a human TAFII250 double bromodomain module. Science 288:1422–1425PubMedCrossRefGoogle Scholar
  76. 76.
    Mizzen CA, Yang XJ, Kokubo T, Brownell JE, Bannister AJ, Owen-Hughes T, Workman J, Wang L, Berger SL, Kouzarides T, Nakatani Y, Allis CD (1996) The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87:1261–1270PubMedCrossRefGoogle Scholar
  77. 77.
    Vermeulen M, Mulder KW, Denissov S, Pijnappel WW, van Schaik FM, Varier RA, Baltissen MP, Stunnenberg HG, Mann M, Timmers HT (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131:58–69PubMedCrossRefGoogle Scholar
  78. 78.
    van Ingen H, van Schaik FM, Wienk H, Ballering J, Rehmann H, Dechesne AC, Kruijzer JA, Liskamp RM, Timmers HT, Boelens R (2008) Structural insight into the recognition of the H3K4me3 mark by the TFIID subunit TAF3. Structure 16:1245–1256PubMedCrossRefGoogle Scholar
  79. 79.
    Vassallo MF, Tanese N (2002) Isoform-specific interaction of HP1 with human TAFII130. Proc Natl Acad Sci USA 99:5919–5924PubMedCrossRefGoogle Scholar
  80. 80.
    Kwon SH, Workman JL (2008) The heterochromatin protein 1 (HP1) family: put away a bias toward HP1. Mol Cells 26:217–227PubMedGoogle Scholar
  81. 81.
    Lomberk G, Wallrath L, Urrutia R (2006) The Heterochromatin Protein 1 family. Genome Biol 7:228PubMedCrossRefGoogle Scholar
  82. 82.
    Suganuma T, Pattenden SG, Workman JL (2008) Diverse functions of WD40 repeat proteins in histone recognition. Genes Dev 22:1265–1268PubMedCrossRefGoogle Scholar
  83. 83.
    Callebaut I, Prat K, Meurice E, Mornon JP, Tomavo S (2005) Prediction of the general transcription factors associated with RNA polymerase II in Plasmodium falciparum: conserved features and differences relative to other eukaryotes BMC. Genomics 6:100PubMedCrossRefGoogle Scholar
  84. 84.
    Stuwe T, Hothorn M, Lejeune E, Rybin V, Bortfeld M, Scheffzek K, Ladurner AG (2008) The FACT Spt16 “peptidase” domain is a histone H3–H4 binding module. Proc Natl Acad Sci USA 105:8884–8889PubMedCrossRefGoogle Scholar
  85. 85.
    Yudkovsky N, Ranish JA, Hahn S (2000) A transcription reinitiation intermediate that is stabilized by activator. Nature 408:225–229PubMedCrossRefGoogle Scholar
  86. 86.
    Martianov I, Viville S, Davidson I (2002) RNA polymerase II transcription in murine cells lacking the TATA binding protein. Science 298:1036–1039PubMedCrossRefGoogle Scholar
  87. 87.
    Davidson I (2003) The genetics of TBP and TBP-related factors. Trends Biochem Sci 28:391–398PubMedCrossRefGoogle Scholar
  88. 88.
    Christova R, Oelgeschlager T (2002) Association of human TFIID-promoter complexes with silenced mitotic chromatin in vivo. Nat Cell Biol 4:79–82PubMedCrossRefGoogle Scholar
  89. 89.
    Xing H, Vanderford NL, Sarge KD (2008) The TBP-PP2A mitotic complex bookmarks genes by preventing condensin action. Nat Cell Biol 10:1318–1323PubMedCrossRefGoogle Scholar
  90. 90.
    Indra AK, Mohan WS 2nd, Frontini M, Scheer E, Messaddeq N, Metzger D, Tora L (2005) TAF10 is required for the establishment of skin barrier function in foetal, but not in adult mouse epidermis. Dev Biol 285:28–37Google Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Emilie Cler
    • 1
  • Gabor Papai
    • 1
  • Patrick Schultz
    • 1
  • Irwin Davidson
    • 1
  1. 1.Institut de Génétique et de Biologie Moléculaire et CellulaireCNRS/INSERM/ULPIllkirch CedexFrance

Personalised recommendations