Cellular and Molecular Life Sciences

, Volume 66, Issue 13, pp 2093–2108 | Cite as

Membrane functional organisation and dynamic of μ-opioid receptors

  • André LopezEmail author
  • Laurence SaloméEmail author


The activation and signalling activity of the membrane μ-opioid receptor (MOP-R) involve interactions among the receptor, G-proteins, effectors and many other membrane or cytosolic proteins. Decades of investigation have led to identification of the main biochemical processes, but the mechanisms governing the successive protein–protein interactions have yet to be established. We will need to unravel the dynamic membrane organisation of this complex and multifaceted molecular machinery if we are to understand these mechanisms. Here, we review and discuss advances in our understanding of the signalling mechanism of MOP-R resulting from biochemical or biophysical studies of the organisation of this receptor in the plasma membrane.


Signal transduction Protein interactions Membrane functional domains G-protein-coupled receptors 


  1. 1.
    Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990PubMedGoogle Scholar
  2. 2.
    Law PY, Loh HH, Wei LN (2004) Insights into the receptor transcription and signaling: implications in opioid tolerance and dependence. Neuropharmacology 47(Suppl 1):300–311PubMedGoogle Scholar
  3. 3.
    Pasternak GW (2004) Multiple opiate receptors: deja vu all over again. Neuropharmacology 47(Suppl 1):312–323PubMedGoogle Scholar
  4. 4.
    Mansour, A, Schafer, MKH, Newman, SW, Watson SJ (1991) Central distribution of opioid receptors: a cross-species comparison of the multiple opioid system of the basal ganglia. In: Almeida O, Shippenberg T (eds) Neurobiology of opioids. Springer, Berlin, pp 169–183Google Scholar
  5. 5.
    Hur EM, Kim KT (2002) G protein-coupled receptor signalling and cross-talk: achieving rapidity and specificity. Cell Signal 14:397–405PubMedGoogle Scholar
  6. 6.
    Becamel C, Gavarini S, Chanrion B, Alonso G, Galeotti N, Dumuis A, Bockaert J, Marin P (2004) The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J Biol Chem 279:20257–20266PubMedGoogle Scholar
  7. 7.
    Bockaert J, Marin P, Dumuis A, Fagni L (2003) The ‘magic tail’ of G protein-coupled receptors: an anchorage for functional protein networks. FEBS Lett 546:65–72PubMedGoogle Scholar
  8. 8.
    Neubig RR (1994) Membrane organization in G-protein mechanisms. FASEB J 8:939–946PubMedGoogle Scholar
  9. 9.
    Digby GJ, Lober RM, Sethi PR, Lambert NA (2006) Some G protein heterotrimers physically dissociate in living cells. Proc Natl Acad Sci USA 103:17789–17794PubMedGoogle Scholar
  10. 10.
    Fahrenholz F, Klein U, Gimpl G (1995) Conversion of the myometrial oxytocin receptor from low to high affinity state by cholesterol. Adv Exp Med Biol 395:311–319PubMedGoogle Scholar
  11. 11.
    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745PubMedGoogle Scholar
  12. 12.
    Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265PubMedGoogle Scholar
  13. 13.
    Chen C, Shahabi V, Xu W, Liu-Chen LY (1998) Palmitoylation of the rat mu opioid receptor. FEBS Lett 441:148–152PubMedGoogle Scholar
  14. 14.
    Chavkin C, McLaughlin JP, Celver JP (2001) Regulation of opioid receptor function by chronic agonist exposure: constitutive activity and desensitization. Mol Pharmacol 60:20–25PubMedGoogle Scholar
  15. 15.
    Filizola M, Laakkonen L, Loew GH (1999) 3D modeling, ligand binding and activation studies of the cloned mouse delta, mu; and kappa opioid receptors. Protein Eng 12:927–942PubMedGoogle Scholar
  16. 16.
    Pogozheva ID, Przydzial MJ, Mosberg HI (2005) Homology modeling of opioid receptor-ligand complexes using experimental constraints. AAPS J 7:E434–E448PubMedGoogle Scholar
  17. 17.
    Kobilka B, Schertler GF (2008) New G-protein-coupled receptor crystal structures: insights and limitations. Trends Pharmacol Sci 29:79–83PubMedGoogle Scholar
  18. 18.
    Alves ID, Cowell SM, Salamon Z, Devanathan S, Tollin G, Hruby VJ (2004) Different structural states of the proteolipid membrane are produced by ligand binding to the human delta-opioid receptor as shown by plasmon-waveguide resonance spectroscopy. Mol Pharmacol 65:1248–1257PubMedGoogle Scholar
  19. 19.
    Salamon Z, Wang Y, Soulages JL, Brown MF, Tollin G (1996) Surface plasmon resonance spectroscopy studies of membrane proteins: Transducin binding and activation by rhodopsin monitored in thin membrane films. Biophys J 71:283–294PubMedGoogle Scholar
  20. 20.
    Le Guyader L, Le Roux C, Mazeres S, Gaspard-Iloughmane H, Gornitzka H, Millot C, Mingotaud C, Lopez A (2007) Changes of the membrane lipid organization characterized by means of a new cholesterol-pyrene probe. Biophys J 93:4462–4473PubMedGoogle Scholar
  21. 21.
    Nikolaev VO, Boettcher C, Dees C, Bunemann M, Lohse MJ, Zenk MH (2007) Live cell monitoring of mu-opioid receptor-mediated G-protein activation reveals strong biological activity of close morphine biosynthetic precursors. J Biol Chem 282:27126–27132PubMedGoogle Scholar
  22. 22.
    Gonzalez-Maeso J, Rodriguez-Puertas R, Meana JJ (2002) Quantitative stoichiometry of G-proteins activated by mu-opioid receptors in postmortem human brain. Eur J Pharmacol 452:21–33PubMedGoogle Scholar
  23. 23.
    Blanchet C, Sollini M, Luscher C (2003) Two distinct forms of desensitization of G-protein coupled inwardly rectifying potassium currents evoked by alkaloid and peptide mu-opioid receptor agonists. Mol Cell Neurosci 24:517–523PubMedGoogle Scholar
  24. 24.
    Connor M, Christie MD (1999) Opioid receptor signalling mechanisms. Clin Exp Pharmacol Physiol 26:493–499PubMedGoogle Scholar
  25. 25.
    Garzon J, Castro M, Sanchez-Blazquez P (1998) Influence of Gz and Gi2 transducer proteins in the affinity of opioid agonists to mu receptors. Eur J Neurosci 10:2557–2564PubMedGoogle Scholar
  26. 26.
    Lee JW, Joshi S, Chan JS, Wong YH (1998) Differential coupling of mu-, delta-, and kappa-opioid receptors to G alpha16-mediated stimulation of phospholipase C. J Neurochem 70:2203–2211PubMedCrossRefGoogle Scholar
  27. 27.
    Diel S, Beyermann M, Llorens JM, Wittig B, Kleuss C (2008) Two interaction sites on mammalian adenylyl cyclase type I and II: modulation by calmodulin and G(betagamma). Biochem J 411:449–456PubMedGoogle Scholar
  28. 28.
    Chakrabarti S, Regec A, Gintzler AR (2005) Chronic morphine acts via a protein kinase Cgamma-G(beta)-adenylyl cyclase complex to augment phosphorylation of G(beta) and G(betagamma) stimulatory adenylyl cyclase signaling. Brain Res Mol Brain Res 138:94–103PubMedGoogle Scholar
  29. 29.
    Ikeda K, Kobayashi T, Kumanishi T, Yano R, Sora I, Niki H (2002) Molecular mechanisms of analgesia induced by opioids and ethanol: is the GIRK channel one of the keys? Neurosci Res 44:121–131PubMedGoogle Scholar
  30. 30.
    Williams JT, Christie MJ, Manzoni O (2001) Cellular and synaptic adaptations mediating opioid dependence. Physiol Rev 81:299–343PubMedGoogle Scholar
  31. 31.
    Clark MJ, Harrison C, Zhong H, Neubig RR, Traynor JR (2003) Endogenous RGS protein action modulates mu-opioid signaling through Galphao: effects on adenylyl cyclase, extracellular signal-regulated kinases, and intracellular calcium pathways. J Biol Chem 278:9418–9425PubMedGoogle Scholar
  32. 32.
    Xie Z, Li Z, Guo L, Ye C, Li J, Yu X, Yang H, Wang Y, Chen C, Zhang D, Liu-Chen LY (2007) Regulator of G protein signaling proteins differentially modulate signaling of mu and delta opioid receptors. Eur J Pharmacol 565:45–53PubMedGoogle Scholar
  33. 33.
    Brady AE, Limbird LE (2002) G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal 14:297–309PubMedGoogle Scholar
  34. 34.
    Sato M, Blumer JB, Simon V, Lanier SM (2006) Accessory proteins for G proteins: partners in signaling. Annu Rev Pharmacol Toxicol 46:151–187PubMedGoogle Scholar
  35. 35.
    Gimpl G, Fahrenholz F (2002) Cholesterol as stabilizer of the oxytocin receptor. Biochim Biophys Acta 1564:384–392PubMedGoogle Scholar
  36. 36.
    Scanlon SM, Williams DC, Schloss P (2001) Membrane cholesterol modulates serotonin transporter activity. Biochemistry 40:10507–10513PubMedGoogle Scholar
  37. 37.
    Nunez MT, Glass J (1982) Reconstitution of the transferrin receptor in lipid vesicles: effect of cholesterol on the binding of transferrin. Biochemistry 21:4139–4143PubMedGoogle Scholar
  38. 38.
    Pike LJ, Casey L (2002) Cholesterol levels modulate EGF receptor-mediated signaling by altering receptor function and trafficking. Biochemistry 41:10315–10322PubMedGoogle Scholar
  39. 39.
    Westover EJ, Covey DF, Brockman HL, Brown RE, Pike LJ (2003) Cholesterol depletion results in site-specific increases in epidermal growth factor receptor phosphorylation due to membrane level effects: studies with cholesterol enantiomers. J Biol Chem 278:51125–51133PubMedGoogle Scholar
  40. 40.
    Polozova A, Litman BJ (2000) Cholesterol dependent recruitment of di22:6-PC by a G protein-coupled receptor into lateral domains. Biophys J 79:2632–2643PubMedGoogle Scholar
  41. 41.
    Niu SL, Mitchell DC, Litman BJ (2002) Manipulation of cholesterol levels in rod disk membranes by methyl-beta-cyclodextrin: effects on receptor activation. J Biol Chem 277:20139–20145PubMedGoogle Scholar
  42. 42.
    Niu SL, Mitchell DC, Lim SY, Wen ZM, Kim HY, Salem N Jr, Litman BJ (2004) Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to N-3 fatty acid deficiency. J Biol Chem 279:31098–31104PubMedGoogle Scholar
  43. 43.
    Pang L, Graziano M, Wang S (1999) Membrane cholesterol modulates galanin-GalR2 interaction. Biochemistry 38:12003–12011PubMedGoogle Scholar
  44. 44.
    Harikumar KG, Puri V, Singh RD, Hanada K, Pagano RE, Miller LJ (2005) Differential effects of modification of membrane cholesterol and sphingolipids on the conformation, function, and trafficking of the G protein-coupled cholecystokinin receptor. J Biol Chem 280:2176–2185PubMedGoogle Scholar
  45. 45.
    Pucadyil TJ, Chattopadhyay A (2004) Cholesterol modulates ligand binding and G-protein coupling to serotonin(1A) receptors from bovine hippocampus. Biochim Biophys Acta 1663:188–200PubMedGoogle Scholar
  46. 46.
    Gimpl G, Klein U, Reilander H, Fahrenholz F (1995) Expression of the human oxytocin receptor in baculovirus-infected insect cells: high-affinity binding is induced by a cholesterol-cyclodextrin complex. Biochemistry 34:13794–13801PubMedGoogle Scholar
  47. 47.
    Klein U, Gimpl G, Fahrenholz F (1995) Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34:13784–13793PubMedGoogle Scholar
  48. 48.
    Lazar DF, Medzihradsky F (1992) Altered microviscosity at brain membrane surface induces distinct and reversible inhibition of opioid receptor binding. J Neurochem 59:1233–1240PubMedGoogle Scholar
  49. 49.
    Farahbakhsh ZT, Deamer DW, Lee NM, Loh HH (1986) Enzymatic reconstitution of brain membrane and membrane opiate receptors. J Neurochem 46:953–962PubMedGoogle Scholar
  50. 50.
    Huang P, Xu W, Yoon SI, Chen C, Chong PL, Liu-Chen LY (2007) Cholesterol reduction by methyl-beta-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. Biochem Pharmacol 73:534–549PubMedGoogle Scholar
  51. 51.
    Gimpl G, Fahrenholz F (2000) Human oxytocin receptors in cholesterol-rich vs: cholesterol-poor microdomains of the plasma membrane. Eur J Biochem 267:2483–2497PubMedGoogle Scholar
  52. 52.
    Lagane B, Gaibelet G, Meilhoc E, Masson JM, Cezanne L, Lopez A (2000) Role of sterols in modulating the human mu-opioid receptor function in Saccharomyces cerevisiae. J Biol Chem 275:33197–33200PubMedGoogle Scholar
  53. 53.
    Gaibelet G, Millot C, Lebrun C, Ravault S, Saulière A, André A, Lagane B, Lopez A (2008) Cholesterol content drives distinct pharmacological behaviours of μ-opioid receptor in different microdomains of the CHO plasma membrane. Mol Memb Biol 25:423–435Google Scholar
  54. 54.
    Emmerson PJ, Clark MJ, Medzihradsky F, Remmers AE (1999) Membrane microviscosity modulates mu-opioid receptor conformational transitions and agonist efficacy. J Neurochem 73:289–300PubMedGoogle Scholar
  55. 55.
    Shinitzky M, Skornick Y, Haran-Ghera N (1979) Effective tumor immunization induced by cells of elevated membrane-lipid microviscosity. Proc Natl Acad Sci USA 76:5313–5316PubMedGoogle Scholar
  56. 56.
    Cantor RS (1999) The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem Phys Lipids 101:45–56PubMedGoogle Scholar
  57. 57.
    Cantor RS (1999) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76:2625–2639PubMedGoogle Scholar
  58. 58.
    Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544PubMedGoogle Scholar
  59. 59.
    Chidiac P (1998) Rethinking receptor-G protein-effector interactions. Biochem Pharmacol 55:549–556PubMedGoogle Scholar
  60. 60.
    Kurzchalia TV, Parton RG (1999) Membrane microdomains and caveolae. Curr Opin Cell Biol 11:424–431PubMedGoogle Scholar
  61. 61.
    Harder T, Simons K (1997) Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol 9:534–542PubMedGoogle Scholar
  62. 62.
    Kurzchalia TV, Dupree P, Parton RG, Kellner R, Virta H, Lehnert M, Simons K (1992) VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J Cell Biol 118:1003–1014PubMedGoogle Scholar
  63. 63.
    Zhao H, Loh HH, Law PY (2006) Adenylyl cyclase superactivation induced by long-term treatment with opioid agonist is dependent on receptor localized within lipid rafts and is independent of receptor internalization. Mol Pharmacol 69:1421–1432PubMedGoogle Scholar
  64. 64.
    Huang P, Xu W, Yoon SI, Chen C, Chong PL, Unterwald EM, Liu-Chen LY (2007) Agonist treatment did not affect association of mu opioid receptors with lipid rafts and cholesterol reduction had opposite effects on the receptor-mediated signaling in rat brain and CHO cells. Brain Res 1184:46–56PubMedGoogle Scholar
  65. 65.
    Head BP, Patel HH, Roth DM, Lai NC, Niesman IR, Farquhar MG, Insel PA (2005) G-protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. J Biol Chem 280:31036–31044PubMedGoogle Scholar
  66. 66.
    Mouledous L, Merker S, Neasta J, Roux B, Zajac JM, Mollereau C (2008) Neuropeptide FF-sensitive confinement of mu opioid receptor does not involve lipid rafts in SH-SY5Y cells. Biochem Biophys Res Commun 373:80–84PubMedGoogle Scholar
  67. 67.
    Cezanne L, Navarro L, Tocanne JF (1992) Isolation of the plasma membrane and organelles from Chinese hamster ovary cells. Biochim Biophys Acta 1112:205–214PubMedGoogle Scholar
  68. 68.
    Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K (2003) Resistance of cell membranes to different detergents. Proc Natl Acad Sci USA 100:5795–5800PubMedGoogle Scholar
  69. 69.
    Babiychuk B, Draeger A (2006) Biochemical characterization of detergent-resistant membranes: a systematic approach. Biochem J 397:407–416PubMedGoogle Scholar
  70. 70.
    André A, Gaibelet G, Le Guyader L, Welby M, Lopez A, Lebrun C (2008) Membrane partitioning of various delta-opioid receptor forms before and after agonist activations: the effect of cholesterol. Biochim Biophys Acta 1778:1483–1492PubMedGoogle Scholar
  71. 71.
    Gage RM, Kim KA, Cao TT, von Zastrow M (2001) A transplantable sorting signal that is sufficient to mediate rapid recycling of G protein-coupled receptors. J Biol Chem 276:44712–44720PubMedGoogle Scholar
  72. 72.
    Tanowitz M, von Zastrow M (2003) A novel endocytic recycling signal that distinguishes the membrane trafficking of naturally occurring opioid receptors. J Biol Chem 278:45978–45986PubMedGoogle Scholar
  73. 73.
    Wang D, Surratt CK, Sadee W (2000) Calmodulin regulation of basal and agonist-stimulated G protein coupling by the mu-opioid receptor (OP(3)) in morphine-pretreated cell. J Neurochem 75:763–771PubMedGoogle Scholar
  74. 74.
    Wang D, Tolbert LM, Carlson KW, Sadee W (2000) Nuclear Ca2+/calmodulin translocation activated by mu-opioid (OP3) receptor. J Neurochem 74:1418–1425PubMedGoogle Scholar
  75. 75.
    Charlton JJ, Allen PB, Psifogeorgou K, Chakravarty S, Gomes I, Neve RL, Devi LA, Greengard P, Nestler EJ, Zachariou V (2008) Multiple actions of spinophilin regulate mu opioid receptor function. Neuron 58:238–247PubMedGoogle Scholar
  76. 76.
    Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80PubMedGoogle Scholar
  77. 77.
    Holinstat M, Oldham WM, Hamm HE (2006) G-protein-coupled receptors: evolving views on physiological signalling: symposium on G-protein-coupled receptors: evolving concepts and new techniques. EMBO Rep 7:866–869PubMedGoogle Scholar
  78. 78.
    Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517PubMedGoogle Scholar
  79. 79.
    Marie N, Aguila B, Allouche S (2006) Tracking the opioid receptors on the way of desensitization. Cell Signal 18:1815–1833PubMedGoogle Scholar
  80. 80.
    Carman CV, Barak LS, Chen C, Liu-Chen LY, Onorato JJ, Kennedy SP, Caron MG, Benovic JL (2000) Mutational analysis of Gbetagamma and phospholipid interaction with G protein-coupled receptor kinase 2. J Biol Chem 275:10443–10452PubMedGoogle Scholar
  81. 81.
    Celver JP, Lowe J, Kovoor A, Gurevich VV, Chavkin C (2001) Threonine 180 is required for G-protein-coupled receptor kinase 3- and beta-arrestin 2-mediated desensitization of the mu-opioid receptor in Xenopus oocytes. J Biol Chem 276:4894–4900PubMedGoogle Scholar
  82. 82.
    Qiu Y, Law PY, Loh HH (2003) Mu-opioid receptor desensitization: role of receptor phosphorylation, internalization, and representation. J Biol Chem 278:36733–36739PubMedGoogle Scholar
  83. 83.
    Deng HB, Yu Y, Pak Y, O’Dowd BF, George SR, Surratt CK, Uhl GR, Wang JB (2000) Role for the C-terminus in agonist-induced mu opioid receptor phosphorylation and desensitization. Biochemistry 39:5492–5499PubMedGoogle Scholar
  84. 84.
    Zheng H, Loh HH, Law PY (2008) Beta-arrestin-dependent mu-opioid receptor-activated extracellular signal-regulated kinases (ERKs) translocate to nucleus in contrast to G protein-dependent ERK activation. Mol Pharmacol 73:178–190PubMedGoogle Scholar
  85. 85.
    Onoprishvili I, Andria ML, Kramer HK, Ancevska-Taneva N, Hiller JM, Simon EJ (2003) Interaction between the mu opioid receptor and filamin A is involved in receptor regulation and trafficking. Mol Pharmacol 64:1092–1100PubMedGoogle Scholar
  86. 86.
    Remmers AE, Clark MJ, Alt A, Medzihradsky F, Woods JH, Traynor JR (2000) Activation of G protein by opioid receptors: role of receptor number and G-protein concentration. Eur J Pharmacol 396:67–75PubMedGoogle Scholar
  87. 87.
    Sternini C, Spann M, Anton B, Keith DE Jr, Bunnett NW, von Zastrow M, Evans C, Brecha NC (1996) Agonist-selective endocytosis of mu opioid receptor by neurons in vivo. Proc Natl Acad Sci USA 93:9241–9246PubMedGoogle Scholar
  88. 88.
    Keith DE, Murray SR, Zaki PA, Chu PC, Lissin DV, Kang L, Evans CJ, von Zastrow M (1996) Morphine activates opioid receptors without causing their rapid internalization. J Biol Chem 271:19021–19024PubMedGoogle Scholar
  89. 89.
    Borgland SL, Connor M, Osborne PB, Furness JB, Christie MJ (2003) Opioid agonists have different efficacy profiles for G protein activation, rapid desensitization, and endocytosis of mu-opioid receptors. J Biol Chem 278:18776–18784 Epub 2003 Mar 17PubMedGoogle Scholar
  90. 90.
    Pak Y, O’Dowd BF, Wang JB, George SR (1999) Agonist-induced, G protein-dependent and -independent down-regulation of the mu opioid receptor: the receptor is a direct substrate for protein-tyrosine kinase. J Biol Chem 274:27610–27616PubMedGoogle Scholar
  91. 91.
    Garzon J, Rodriguez-Munoz M, Lopez-Fando A, Sanchez-Blazquez P (2005) The RGSZ2 protein exists in a complex with mu-opioid receptors and regulates the desensitizing capacity of Gz proteins. Neuropsychopharmacol 30:1632–1648Google Scholar
  92. 92.
    Pascal G, Milligan G (2005) Functional complementation and the analysis of opioid receptor homodimerization. Mol Pharmacol 68:905–915PubMedGoogle Scholar
  93. 93.
    Wang D, Sun X, Bohn LM, Sadee W (2005) Opioid receptor homo- and heterodimerization in living cells by quantitative bioluminescence resonance energy transfer. Mol Pharmacol 67:2173–2184PubMedGoogle Scholar
  94. 94.
    George SR, Fan T, Xie Z, Tse R, Tam V, Varghese G, O’Dowd BF (2000) Oligomerization of mu- and delta-opioid receptors: generation of novel functional properties. J Biol Chem 275:26128–26135PubMedGoogle Scholar
  95. 95.
    Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA (2000) Heterodimerization of mu and delta opioid receptors: a role in opiate synergy. J Neurosci 20:RC110(5)Google Scholar
  96. 96.
    Charles AC, Mostovskaya N, Asas K, Evans CJ, Dankovich ML, Hales TG (2003) Coexpression of delta-opioid receptors with micro receptors in GH3 cells changes the functional response to micro agonists from inhibitory to excitatory. Mol Pharmacol 63:89–95PubMedGoogle Scholar
  97. 97.
    Law PY, Erickson-Herbrandson LJ, Zha QQ, Solberg J, Chu J, Sarre A, Loh HH (2005) Heterodimerization of mu- and delta-opioid receptors occurs at the cell surface only and requires receptor-G protein interactions. J Biol Chem 280:11152–11164PubMedGoogle Scholar
  98. 98.
    Rozenfeld R, Devi LA (2007) Receptor heterodimerization leads to a switch in signaling: beta-arrestin2-mediated ERK activation by mu-delta opioid receptor heterodimers. FASEB J 21:2455–2465PubMedGoogle Scholar
  99. 99.
    Snook LA, Milligan G, Kieffer BL, Massotte D (2006) Mu-delta opioid receptor functional interaction: insight using receptor-G protein fusions. J Pharmacol Exp Ther 318:683–690PubMedGoogle Scholar
  100. 100.
    Jordan BA, Gomes I, Rios C, Filipovska J, Devi LA (2003) Functional interactions between mu opioid and alpha 2A-adrenergic receptors. Mol Pharmacol 64:1317–1324PubMedGoogle Scholar
  101. 101.
    Pan YX, Bolan E, Pasternak GW (2002) Dimerization of morphine and orphanin FQ/nociceptin receptors: generation of a novel opioid receptor subtype. Biochem Biophys Res Commun 297:659–663PubMedGoogle Scholar
  102. 102.
    Chen C, Li J, Bot G, Szabo I, Rogers TJ, Liu-Chen LY (2004) Heterodimerization and cross-desensitization between the mu-opioid receptor and the chemokine CCR5 receptor. Eur J Pharmacol 483:175–186PubMedGoogle Scholar
  103. 103.
    Zhang N, Oppenheim JJ (2005) Crosstalk between chemokines and neuronal receptors bridges immune and nervous systems. J Leukoc Biol 78:1210–1214PubMedGoogle Scholar
  104. 104.
    Patel JP, Sengupta R, Bardi G, Khan MZ, Mullen-Przeworski A, Meucci O (2006) Modulation of neuronal CXCR4 by the micro-opioid agonist DAMGO. J Neurovirol 12:492–500PubMedGoogle Scholar
  105. 105.
    Jordan BA, Trapaidze N, Gomes I, Nivarthi R, Devi LA (2001) Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci USA 98:343–348PubMedGoogle Scholar
  106. 106.
    Roumy M, Lorenzo C, Mazeres S, Bouchet S, Zajac JM, Mollereau C (2007) Physical association between neuropeptide FF and micro-opioid receptors as a possible molecular basis for anti-opioid activity. J Biol Chem 282:8332–8342PubMedGoogle Scholar
  107. 107.
    Pfeiffer M, Koch T, Schroder H, Laugsch M, Hollt V, Schulz S (2002) Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J Biol Chem 277:19762–19772PubMedGoogle Scholar
  108. 108.
    Baker A, Sauliere A, Dumas F, Millot C, Mazeres S, Lopez A, Salome L (2007) Functional membrane diffusion of G-protein coupled receptors. Eur Biophys J 36:849–860PubMedGoogle Scholar
  109. 109.
    Salome L, Cazeils JL, Lopez A, Tocanne JF (1998) Characterization of membrane domains by FRAP experiments at variable observation areas. Eur Biophys J 27:391–402PubMedGoogle Scholar
  110. 110.
    Sauliere A, Gaibelet G, Millot C, Mazeres S, Lopez A, Salome L (2006) Diffusion of the mu opioid receptor at the surface of human neuroblastoma SH-SY5Y cells is restricted to permeable domains. FEBS Lett 580:5227–5231PubMedGoogle Scholar
  111. 111.
    Saulière, A. (2007) Etapes membranaires de la transduction du signal par les recepteurs couplés aux protéines G: Organisation dynamique du récepteur μ aux opioïdes humain à la surface de neuroblastomes, in Thesis Biophysique. Université Paul Sabatier- Toulouse III: Toulouse. 200. Available after request to authorsGoogle Scholar
  112. 112.
    Suzuki K, Ritchie K, Kajikawa E, Fujiwara T, Kusumi A (2005) Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys J 88:3659–3680PubMedGoogle Scholar
  113. 113.
    Daumas F, Destainville N, Millot C, Lopez A, Dean D, Salome L (2003) Interprotein interactions are responsible for the confined diffusion of a G-protein-coupled receptor at the cell surface. Biochem Soc Trans 31:1001–1005PubMedGoogle Scholar
  114. 114.
    Daumas F, Destainville N, Millot C, Lopez A, Dean D, Salome L (2003) Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking. Biophys J 84:356–366PubMedGoogle Scholar
  115. 115.
    Meilhac N, Le Guyader L, Salome L, Destainville N (2006) Detection of confinement and jumps in single-molecule membrane trajectories. Phys Rev E Stat Nonlin Soft Matter Phys 73:011915(4)Google Scholar
  116. 116.
    Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157:1071–1081PubMedGoogle Scholar
  117. 117.
    Daumas F (2002) Diffusion latérale du récepteur μ aux opioïdes analysée par suivi de particule unique à la surface de cellules vivantes: relation organisation dynamique-fonction, in Thesis Biophysique. Université Paul Sabatier-Toulouse III: Toulouse. 147. Available after request to authorsGoogle Scholar
  118. 118.
    Jacobson K, Dietrich C (1999) Looking at lipid rafts? Trends Cell Biol 9:87–91PubMedGoogle Scholar
  119. 119.
    Huang P, Chen C, Xu W, Yoon SI, Unterwald EM, Pintar JE, Wang Y, Chong PL, Liu-Chen LY (2008) Brain region-specific N-glycosylation and lipid rafts association of the rat mu opioid receptor. Biochem Biophys Res Commun 365:82–88PubMedGoogle Scholar
  120. 120.
    Onoprishvili I, Ali S, Andria ML, Shpigel A, Simon EJ (2008) Filamin A mutant lacking actin-binding domain restores mu opioid receptor regulation in melanoma cells. Neurochem Res 33:2054–2061PubMedGoogle Scholar
  121. 121.
    El Kouhen R, Burd AL, Erickson-Herbrandson LJ, Chang CY, Law PY, Loh HH (2001) Phosphorylation of Ser363, Thr370, and Ser375 residues within the carboxyl tail differentially regulates mu-opioid receptor internalization. J Biol Chem 276:12774–12780PubMedGoogle Scholar
  122. 122.
    Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA (2004) A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci USA 101:5135–5139PubMedGoogle Scholar
  123. 123.
    Snook LA, Milligan G, Kieffer BL, Massotte D (2008) Co-expression of mu and delta opioid receptors as receptor-G protein fusions enhances both mu and delta signalling via distinct mechanisms. J Neurochem 105:865–873PubMedGoogle Scholar
  124. 124.
    Vilardaga JP, Nikolaev VO, Lorenz K, Ferrandon S, Zhuang Z, Lohse MJ (2008) Conformational cross-talk between alpha2A-adrenergic and mu-opioid receptors controls cell signaling. Nat Chem Biol 4:126–131PubMedGoogle Scholar
  125. 125.
    Juhasz JR, Hasbi A, Rashid AJ, So CH, George SR, O’Dowd BF (2008) Mu-opioid receptor heterooligomer formation with the dopamine D1 receptor as directly visualized in living cells. Eur J Pharmacol 581:235–243PubMedGoogle Scholar
  126. 126.
    Suzuki S, Chuang LF, Yau P, Doi RH, Chuang RY (2002) Interactions of opioid and chemokine receptors: oligomerization of mu, kappa, and delta with CCR5 on immune cells. Exp Cell Res 280:192–200PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale)ToulouseFrance
  2. 2.Université de Toulouse, UPS, IPBSToulouseFrance

Personalised recommendations