Cellular and Molecular Life Sciences CMLS

, Volume 62, Issue 11, pp 1234–1246 | Cite as

Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae



The rdar morphotype, a multicellular behaviour of Salmonella enterica and Escherichia coli is characterized by the expression of the adhesive extracellular matrix components cellulose and curli fimbriae. The response regulator CsgD, which transcriptionally activates the biosynthesis of the exopolysaccharide cellulose and curli, also transforms cell physiology to the multicellular state. However, the only role of CsgD in cellulose biosynthesis is the activation of AdrA, a GGDEF domain protein that mediates production of the allosteric activator cyclic-di-(3′-5′)guanylic acid (c-di-GMP). In S. enterica serovar Typhimurium a regulatory network consisting of 19 GGDEF/EAL domain-containing proteins tightly controls the concentration of c-di-GMP. c-di-GMP not only regulates the expression of cellulose, but also stimulates expression of adhesive curli and represses various modes of motility. Functions of characterized GGDEF and EAL domain proteins, as well as database searches, point to a global role for c-di-GMP as a novel secondary messenger that regulates a variety of cellular functions in response to diverse environmental stimuli already in the deepest roots of the prokaryotes.

Key words.

Biofilm cellulose curli fimbriae cyclic di-GMP EAL domain Escherichia coli GGDEF domain Salmonella enterica 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag, Basel 2005

Authors and Affiliations

  1. 1.Microbiology and Tumor Biology Center (MTC)Karolinska InstitutetStockholmSweden

Personalised recommendations