Advertisement

Elemente der Mathematik

, Volume 53, Issue 1, pp 18–35 | Cite as

From Numbers to Rings: The Early History of Ring Theory

  • Israel Kleiner
Article

Keywords

Prime Ideal Division Algebra Algebraic Number Algebraic Function Ring Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Birkhoff and S. MacLane, A Survey of Modern Algebra, Macmillan, 1941.Google Scholar
  2. 2.
    N. Bourbaki, Elements of the History of Mathematics, Springer-Verlag, 1994.Google Scholar
  3. 3.
    D.M. Burton and D.H. Van Osdol, “Toward the definition of an abstract ring”, in: Learn from the Masters, ed. by F. Swetz et al, Mathematical Association of American, 1995, pp. 241–251.Google Scholar
  4. 4.
    H. Cohn, Advanced Number Theory, Dover, 1980.Google Scholar
  5. 5.
    D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, 1992.Google Scholar
  6. 6.
    T. Crilly, “Invariant Theory”, in: Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, ed. by I. Grattan-Guinness, Routledge, 1994, pp. 787–793.Google Scholar
  7. 7.
    H.M. Edwards, “Dedekind’s invention of ideals”, Bull. Lond. Math. Soc. 15(1983), 8–17.CrossRefzbMATHGoogle Scholar
  8. 8.
    —, “The genesis of ideal theory”, Arch. Hist. Ex. Sci. 23(1980), 321–378.CrossRefGoogle Scholar
  9. 9.
    —, Fermat’s Last Theorem: A Genetic Introduction to Algebraic Number Theory, Springer-Verlag, 1977.Google Scholar
  10. 10.
    D. Eisenbud, Commutative Algebra, with a View Toward Algebraic Geometry, Springer-Verlag, 1995.Google Scholar
  11. 11.
    A. Fraenkel, “Über die Teiler der Null und die Zerlegung von Ringen”, Jour. fu¨r die Reine und Angew. Math. 145(1914), 139–176.zbMATHGoogle Scholar
  12. 12.
    J.J. Gray, “Early modern algebraic geometry”, in: Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, ed. by I. Grattan-Guinness, Routledge, 1994, pp. 9207#x2013;926.Google Scholar
  13. 13.
    K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Springer-Verlag, 1982.Google Scholar
  14. 14.
    M. Kline, Mathematical Thought from Ancient to Modern Times, Oxford University Press, 1972.Google Scholar
  15. 15.
    C.C. MacDuffee, “Algebra’s debt to Hamilton”, Scripta Math. 10(1944), 25–35.zbMATHMathSciNetGoogle Scholar
  16. 16.
    K.H. Parshall, “H.M. Wedderburn and the structure theory of algebras”, Arch. Hist. Ex. Sci. 32(1985), 223–349.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    J.H. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer-Verlag, 1992.Google Scholar
  18. 18.
    M. Sono, “On Congruences I”, Mem. Coll. Sci. Kyoto. 2(1917), 203–226Google Scholar
  19. 19.
    M. Sono, “On Congruences II”, Mem. Coll. Sci. Kyoto. 3(1918), 113–149Google Scholar
  20. 20.
    M. Sono, “On Congruences I”, Mem. Coll. Sci. Kyoto. 2(1917), 189–197Google Scholar
  21. 21.
    M. Sono, “On Congruences IV”, Mem. Coll. Sci. Kyoto. 3(1918), 299–308Google Scholar
  22. 22.
    B.L. Van der Waerden, A History of Algebra, Springer-Verlag, 1985Google Scholar
  23. 23.
    J.H.M. Wedderburn, “On hypercomplex numbers”, Proc. Lond. Math. Soc. 6(1907), 77–118.MathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 1998

Authors and Affiliations

  • Israel Kleiner
    • 1
  1. 1.Department of Mathematics and Statistics, York University, North York, Ontario, Canada M3J 1P3 kleiner@yorku.caCA

Personalised recommendations