Physics in Perspective

, Volume 19, Issue 2, pp 151–179 | Cite as

The Four Lives of a Nuclear Accelerator

  • Michael Wiescher


Electrostatic accelerators have emerged as a major tool in research and industry in the second half of the twentieth century. In particular in low energy nuclear physics they have been essential for addressing a number of critical research questions from nuclear structure to nuclear astrophysics. This article describes this development on the example of a single machine which has been used for nearly sixty years at the forefront of scientific research in nuclear physics. The article summarizes the concept of electrostatic accelerators and outlines how this accelerator developed from a bare support function to an independent research tool that has been utilized in different research environments and institutions and now looks forward to a new life as part of the experiment CASPAR at the 4,850” level of the Sanford Underground Research Facility.


accelerator nuclear structure nuclear astrophysics 



This work is dedicated to Ted Litherland and Dick Azuma as early pioneers of experimental nuclear physics and nuclear astrophysics. Many people have contributed by email and discussion to compile the information presented here. I particularly want to thank Alfredo Galindo Uribarri from Oak Ridge National Laboratory, Joachim Görres from the University of Notre Dame, John Hardy from Texas A&M University, Gianluca Imbriani from the University Federico II at Naples, Italy, Liam Kieser from the University of Ottawa, Henry Lee and Ted Litherland from the University of Toronto, Doug Milton from Chalk River, and Hanns-Peter Trautvetter from the University of Bochum, Germany. Special thanks deserve the technical staff and scientists, notably Charlie Finn from Toronto, Brad Mulder from Notre Dame and Dan Robertson from Notre Dame at SURF, who maintained the accelerator, dismantled, and reassembled it to keep it running, and prepare it for its new purpose underground. Finally, I also thank the US National Science Foundation and the Canadian National Research Council for the continuous support they have provided for nearly sixty years to fund the operation of the JN VdG accelerator.


  1. 1.
    M. M. Dolan, G. J. Mathews, D. D. Lam, N. Q. Lan, G. J. Herczeg, D. S. P. Dearborn, “Evolutionary Tracks for Betelgeuse,” The Astrophysics Journal 819 (2016), 1–15.Google Scholar
  2. 2.
    H. Costantini, A. Formicola, G. Imbriani, M. Junker, C. Rolfs, and F. Strieder, “LUNA: A Laboratory for Underground Nuclear Astrophysics,” Reports on Progress in Physics 72 (2009), 086301; Andreas Best, Joachim Görres, Matthias Junker, Karl-Ludwig Kratz, Matthias Laubenstein, Alexander Long, Stefano Nisi, Karl Smith, and Michael Wiescher, “Low Energy Neutron Background in Deep Underground Laboratories,” Nuclear Instruments and Methods in Physics A 812 (2016), 1–6.Google Scholar
  3. 3.
    J. D. Cockroft and E. T. S. Walton, “Artificial Production of Fast Protons,” Nature 129 (1932), 214.Google Scholar
  4. 4.
    Robert J. Van de Graaff, “A 1,500,000 Volt Electrostatic Generator,” Physical Review 38 (1931), 1919–20.Google Scholar
  5. 5.
    M. A. Tuve, L. R. Hafstad, and O. Dahl, “High Voltage Technique for Nuclear Physics Studies,” Physical Review 48 (1935), 315–37.Google Scholar
  6. 6.
    R. G. Herb, D. B. Parkinson, and D. W. Kerst, “A Van de Graaff Electrostatic Generator Operating Under High Air Pressure,” Review of Scientific Instruments 6 (1935), 261–65.Google Scholar
  7. 7.
    Henry H. Barschall, “Raymond George Herb, 1908–1996,” Biographical Memoirs of the National Academy of Sciences, vol. 72, (Washington, DC: National Academy Press, 1997), 177–92, on 181.Google Scholar
  8. 8.
    Ernest O. Lawrence and M. Stanley Livingston, “The Production of High Speed Light Ions without the Use of High Voltages,” Physical Review 40 (1932), 19.Google Scholar
  9. 9.
    John Heilbron and Robert W. Seidel, Lawrence and His Laboratory: A History of the Lawrence Berkeley Laboratory, vol. 1 (Berkeley: University of California Press, 1989); Sam Austin, “The Michigan State University Cyclotron Laboratory: Its Early Years,” Physics in Perspective 17, no. 4 (2016), 298–333.Google Scholar
  10. 10.
    F. Anthony Furfari, “A History of the Van de Graaff Generator,” IEEE Industry Applications Magazine 11, no. 1 (2005), 10–14.Google Scholar
  11. 11.
    W. Bygrave, P. Treado, and J. Lambert, Accelerator Nuclear Physics (Burlington, MA: High Voltage Engineering Corp., 1970).Google Scholar
  12. 12.
    R. J. Van de Graaff, “Tandem Electrostatic Accelerators,” Nuclear Instruments Methods 8 (1960), 195–202.Google Scholar
  13. 13.
    C. P. Browne, “Accelerator Memoirs,” unpublished mansuscript, 1991,
  14. 14.
    J. G. Trump, “New Developments in High Voltage Technology,” IEEE Transactions on Nuclear Science 14, no. 3 (1967), 113–19.Google Scholar
  15. 15.
    R. Middleton, “A Negative Ion Cookbook,” 1990, accessed March 26, 2017,
  16. 16.
    W. P. Wijesundera and F. A. Parpia, “Negative Ions of Carbon, Nitrogen, and Phosphorus,” Physical Review A 57 (1998), 3462–68.Google Scholar
  17. 17.
    J. W. McKay, “Fifty Years of Accelerator Based Physics at Chalk River,” AIP Conference Proceedings 473, no. 1 (1999), 74–79.Google Scholar
  18. 18.
    D. A. Bromley, J. A. Kuehner, and E. Almqvist, “Elastic Scattering of Identical Spin-Zero Nuclei,” Physical Review 123 (1961), 878–93; H. J. Specht, J. S. Fraser, J. C. D. Milton, and W. G. Davies, Physics and the Chemistry of Fission, IAEA-SM-122/128 (Vienna: International Atomic Energy Agency, 1969), 363.Google Scholar
  19. 19.
    P. H. Rose, A. B. Wittkower, R. P. Bastide, and A. J. Gale, “Formation of Helium Ion Beams by the Injection of a Neutral Helium Beam into a Tandem Accelerator,” Review of Scientific Instruments and Methods 32 (1961), 568–71.Google Scholar
  20. 20.
    T. K. Alexander, C. Broude, and A. E. Litherland, “The 3.06 and 3.85 MeV States in O-17,” Nuclear Physics 53 (1964), 593–604.Google Scholar
  21. 21.
    T. R. Ophel, “A History of Accelerators in Australia,” Nuclear Instruments and Methods A 382 (1996), 20–31.Google Scholar
  22. 22.
    A. E. Litherland, private communication, 2013 (“I remember bombarding tritium with 22Ne ions and seeing the Doppler shift attenuation of the 24Ne first excited state gamma ray.”)Google Scholar
  23. 23.
    A. E. Litherland, M. J. L. Yates, B. M. Hinds, and D. Eccleshell, “Lifetimes of the Low-Lying Levels of O18 and F18,” Nuclear Physics 44 (1963), 220–55.Google Scholar
  24. 24.
    A. E. Blaugrund, “Notes on Doppler-Shift Lifetime Measurements,” Nuclear Physics 88 (1966), 501–12.Google Scholar
  25. 25.
    This notation is standard in nuclear reaction physics. The first nucleus (12C) is the target nucleus, the two nuclei in brackets represent the ion projectile (12C) and the detected product (4He). The final nucleus in the equation represents the undetected reaction recoil (20Ne).Google Scholar
  26. 26.
    A. E. Litherland, J. A. Kuehner, H. E. Gove, M. A. Clark, and E. Almqvist, “Rotational Bands in Ne20,” Physical Review Letters 7 (1961), 98–100.Google Scholar
  27. 27.
    E. B. Carter and R. H. Davis, “He, H2 , and Other Negative Ion Beams Available from a Duoplasmatron Ion Source with Gas Charge Exchange,” Review of Scientific Instruments 34 (1963), 93–96.Google Scholar
  28. 28.
    K. A. Wright, B. S. Proimos, and J. G. Trump, “Physical Aspects of Two Million Volt X-ray Therapy,” Surgical Clinics of North America 39 (1959), 1–12.Google Scholar
  29. 29.
    W. A. Fowler, New Uses for Low-Energy Accelerators (Washington, DC: National Academy of Sciences, 1968) and A. E. Litherland, “Low Energy Accelerator Programs in Canada,” Nuclear Instruments and Methods in Physics Research 28 (1964), 55–59.Google Scholar
  30. 30.
    R. E. Azuma, L. E. Carlson, A, M. Charlesworth, K. P. Jackson, N. Anyas-Weiss, and B. Lalović, “A Ge(Li) Counter Investigation of the Gamma-Ray Decay of 28Si Produced in the Reaction 27Al(pγ)28Si,” Canadian Journal of Physics 44 (1966), 3075–81.Google Scholar
  31. 31.
    C. Rolfs, I. Berka, H. P. Trautvetter, and R. E. Azuma, “Nuclear Structure of 18F,” Nuclear Physics A 199 (1973), 328–50.Google Scholar
  32. 32.
    C. Rolfs, “Spectroscopic Factors from Radiative Capture Reactions,” Nuclear Physics A 217 (1973), 29–70.Google Scholar
  33. 33.
    R. E. Azuma and C. R. Rolfs, “Interference Effects in 12C(pγ)13N and Direct Capture to Unbound States,” Nuclear Physics A 277 (1974), 291–308.Google Scholar
  34. 34.
    P. D. Parker and R. Kavanagh, “He3(αγ)Be7 Reaction,” Physical Review 131 (1963), 2578–82 and T. A. Tombrello and P. D. Parker, “Direct-Capture Model for the He3(α, γ)Be7 and T(αγ)Li7 Reactions,” Physical Review 131 (1963), 2582–89.Google Scholar
  35. 35.
    H. P. Trautvetter, “Resonance Strength Measurements in the 24Mg(p, γ) 25Al Reaction,” Nuclear Physics A 243 (1975), 37–43.Google Scholar
  36. 36.
    H. P. Trautvetter and C. Rolfs, “Direct Capture in the 24Mg(p, γ)25Al reaction,” Nuclear Physics A 242 (1975), 519–32.Google Scholar
  37. 37.
    The notation relates to a sequence of reactions triggered by proton capture on a 12C nucleus, forming 13N under emission of γ radiation, the unstable 13N nucleus decays to the stable 13C isotope, which agaim can capture a proton forming stable 14N under emission of γ radiation and so on until the last 15N nucleus captures a proton but emits an α particle forming the initial 12C.Google Scholar
  38. 38.
    H. A. Bethe, “Energy Production in Stars,” Physical Review 55 (1939), 434–56.Google Scholar
  39. 39.
    Specifically: 16O(pγ)17F(βν) 17O(pα)14N(pγ)15O(βν) 15N(pγ)16O. G. R. Caughlan and W. A. Fowler, “The Mean Lifetimes of Carbon, Nitrogen, and Oxygen Nuclei in the CNO Bicycle,” The Astrophysical Journal 136 (1962), 453–64.Google Scholar
  40. 40.
    M. Wiescher, J. Görres, E. Uberseder, G. Imbriani, M. Pignatari, “The Cold and Hot CNO Cycles,” Annual Review of Nuclear and Particle Science 60 (2010), 381–404.Google Scholar
  41. 41.
    C. Rolfs, A. M. Charlesworth, and A. E. Azuma, “Nuclear structure of 18F – Radiative Capture Experiments,” Nuclear Physics A 199 (1973), 257–73.Google Scholar
  42. 42.
    That being: 17O(p,γ)18F(βν)18O(pα)15N(pγ)16O(p, γ)17F(βν)17O. C. Rolfs and W. S. Rodney, “Experimental Evidence for CNO Tri-Cycling,” The Astrophysical Journal 194 (1974), L63–L66.Google Scholar
  43. 43.
    W.E. Kieser, R. E. Azuma, and K. P. Jackson, “The 17O(p, α)14N Reaction: Physics and Astrophysics,” Nuclear Physics A 331 (1979), 155–79.Google Scholar
  44. 44.
    J. E. Bateman, “A Solid State Scintillation Detector for High-Energy Charged Particles,” Nuclear Instruments and Methods in Physics Research 71 (1969), 261–68 and J. M. MacKenzie and G. T. Ewan, “Semiconductor Electron Detectors,” IRE Transactions on Nuclear Science 8 (1961), 50–53.Google Scholar
  45. 45.
    This fourth cycle is described by the following reaction sequence 18O(pγ)19F(pα)16O(pγ)17F(βν)17O(pγ)18F(βν)18OGoogle Scholar
  46. 46.
    M. Wiescher, H. W. Becker, J. Görres, K.-U. Kettner, H. P. Trautvetter, W. E. Kieser, C. Rolfs, R. E. Azuma, et al., “Nuclear and Astrophysical Aspects of 18O(p, γ)19F,” Nuclear Physics A 348 (1980), 165–216.Google Scholar
  47. 47.
    C. L. Bennett, R. P. Beukens, M. R. Clover, H. E. Gove, R. B. Liebert, A. E. Litherland, K. H. Purser, W. E. Sondheim, “Radiocarbon Dating Using Electrostatic Accelerators: Negative Ions Provide the Key,” Science 198, no. 4316 (1977), 508–10.Google Scholar
  48. 48.
    A. E. Litherland, “Ultrasensitive Mass Spectrometry with Accelerators,” Annual Review of Nuclear and Particle Science 30 (1980), 437–73.Google Scholar
  49. 49.
    Harry Gove, From Hiroshima to the Iceman (Bristol: IOP Publishing, 1999).Google Scholar
  50. 50.
    R. P. Beukens, T. E. Drake and A. E. Litherland, “Discovery of a 9/2+ State in 15N,” Physics Letters B 56 (1975), 253–54 and R. P. Beukens, “Many Particle, Many Hole States in 15N” (PhD dissertation, University of Toronto, 1976).Google Scholar
  51. 51.
    A. H. Chung “A Charge Spectrometer for Quark Searches” (PhD dissertation, University of Toronto, 1973).Google Scholar
  52. 52.
    A. E. Litherland, W. T. Diamond, and A. M. Sandorfi, “Plastic Film Detectors for Light and Heavy Fission Studies,” Nuclear Instruments and Methods in Physics Research 162 (1979), 389–94.Google Scholar
  53. 53.
    A. H. Chung, W. T. Diamond, A. E. Litherland, H. L. Pai, and J. Goldemberg, “Electrofission of 24Mg,” Physics Letters B 53 (1974), 244–46.Google Scholar
  54. 54.
    E. A. Litherland, private communication, 2013.Google Scholar
  55. 55.
    M. Wiescher, R. N. Boyd, S. L. Blatt, L. J. Rybarcyk, J. A. Spizuoco, R. E. Azuma, E. T. Clifford, J. D. King, et al, “11C Level Structure via the 10B(p, γ) Reaction,” Physical Review C 28 (1983), 1431–42.Google Scholar
  56. 56.
    M. Wiescher, R. J. deBoer, J. Görres, R. E. Azuma, “Low Energy Measurements of the 10B(pα)7Be Reaction,” Physical Review C 95 (2017) 044617 .Google Scholar
  57. 57.
    J. D. King, R. E. Azuma, J. B. Vise, J. Görres, C. Rolfs, H. P. Trautvetter, and A. E. Vlieks, “Cross Section and Astrophysical S-Factor for the 13C(p, γ)14N Reaction,” Nuclear Physics A 567 (1994), 354–76.Google Scholar
  58. 58.
    U. Schröder, H. W. Becker, G. Bogaert, J. Görres, C. Rolfs, H. P. Trautvetter, R. E. Azuma, C. Campbell, et al., “Stellar Reaction Rate of 14N(p, γ)15O and Hydrogen Burning in Massive Stars,” Nuclear Physics A 467 (1987), 240–60.Google Scholar
  59. 59.
    S. Starrfield, W. M. Sparks, J. W. Truran, and M. Wiescher, “The Effects of New Nuclear Reaction Rates and Opacities on Hydrodynamic Simulations of the Nova Outburst,” The Astrophysical Journal Supplement 27 (2000), 485–95.Google Scholar
  60. 60.
    W. D. Arnett and J. W. Truran, “Carbon-Burning Nucleosynthesis at Constant Temperature,” The Astrophysical Journal 157 (1969), 339–65.Google Scholar
  61. 61.
    L. van Wormer, J. Görres, C. Iliadis, M. Wiescher, and F.-K. Thielemann, “Reaction Rates and Reaction Sequences in the rp-Process,” The Astrophysical Journal 432 (1994), 326–50.Google Scholar
  62. 62.
    M. A. J. Snijders, T. J. Batt, P. F. Roche, M. J. Seaton, D. C. Morton, T. A. T. Spoelstra, and J. J. C. Blades, “Nova Aquilae 1982,” Monthly Notices of the Royal Astronomical Society 228 (1987), 329–76.Google Scholar
  63. 63.
    J. Görres, C. Rolfs, P. Schmalbrock, H. P. Trautvetter, and J. Keinonen, “Search for Low-Energy Resonances in 21Ne(p, γ)22Na and 22Ne(p, γ)23Na,” Nuclear Physics A 385 (1982), 57–75 and J. Görres, H. W. Becker, L. Buchmann, C. Rolfs, P. Schmalbrock, H.-P. Trautvetter, A. Vlieks, J. W. Hammer, and T. R. Donoghue, “Proton-Induced Direct Capture on 21Ne and 22Ne,” Nuclear Physics A 408 (1983), 372–96.Google Scholar
  64. 64.
    K. Elix, H. W. Becker, L. Buchmann, J. Görres, K. U. Kettner, M. Wiescher, and C. Rolfs, “Search for Low-Energy Resonances in 25Mg(p,γ)26Al”, Zeitschrift für Physik A 293 (1979), 261–68 and L. Buchmann, H. W. Becker, K. U. Kettner, W. E. Kieser, P. Schmalbrock, and C. Rolfs, “Stellar Reaction Rate of 26Mg(p, γ)27Al,” Zeitschrift für Physik A 296 (1980), 273–80.Google Scholar
  65. 65.
    S. Graff, J. Görres, M. Wiescher, R. E. Azuma, J. King, J. Vise, G. Hardie, and T. R. Wang, “Proton Capture on 28Si and its Astrophysical Implications,” Nuclear Physics A 510 (1990), 346–59.Google Scholar
  66. 66.
    C. Iliadis, U. Giesen, J. Görres, S. Graff, M. Wiescher, R. E. Azuma, J. King, M. Buckby, et al., “The Reaction Branching 31P(p, γ)/31P(p, α) in the rp-Process,” Nuclear Physics A 533 (1991), 153–69.Google Scholar
  67. 67.
    C. Iliadis, U. Giesen, J. Görres, M. Wiescher, S. M. Graff, R. E. Azuma, and C. A. Barnes, “Direct Proton Capture on 32S,” Nuclear Physics A 539 (1992), 97–111.Google Scholar
  68. 68.
    R. K. Wallace and S. E. Woosley, “Explosive Hydrogen Burning,” The Astrophysical Journal Supplement 45, (1981), 389–420.Google Scholar
  69. 69.
    C. Iliadis, J. Görres, J. G. Ross, K. W. Scheller, M. Wiescher, R. E. Azuma, G. Roters, H. P. Trautvetter, and H.C. Evans, “Explosive Hydrogen Burning of 35Cl,” Nuclear Physics A 571 (1994), 132–58.Google Scholar
  70. 70.
    C. Iliadis, J. G. Ross, J. Görres, M. Wiescher, S. M. Graff, and R. E. Azuma, “The Reaction 36Ar (p, γ)37K in Explosive Hydrogen Burning,” Physical Review C 45 (1992), 2989–94.Google Scholar
  71. 71.
    J. Meissner, “Untersuchung von Zuständen in 40Ca nahe der Protonenschwelle und deren Einfluss auf den Reaktionsfluss im explosiven Wasserstoffbrennen” (Diploma thesis, Technical University Munich, 1995).Google Scholar
  72. 72.
    F. Rembges, C. Freiburghaus, T. Rauscher, F.-K. Thielemann, H. Schatz, and M. Wiescher, “An Approximation for the rp-Process,” The Astrophysical Journal 484 (1997) 412–23.Google Scholar
  73. 73.
    F. Käppeler, M. Wiescher, U. Giesen, J. Görres, I. Baraffe, M. El Eid, C. M. Raiteri, M. Busso, et al., “Reaction Rates for O-18(alpha, gamma)Ne-22, Ne-22(alpha, gamma)Mg-26, and Ne-22(alpha, n)Mg-25 in Stellar Helium Burning and s-Process Nucleosynthesis in Massive Stars,” The Astrophysical Journal 437 (1994), 396–409.Google Scholar
  74. 74.
    P. Magnus, M. S. Smith, P. D. Parker, R. E. Azuma, C. Campell, J. D. King, and J. Vise, “Measurement of the 15N(αγ)19F Resonances at Ec.m.=536 keV and 542 keV,” Nuclear Physics A 470 (1987), 206–12.Google Scholar
  75. 75.
    U. Giesen, C. P. Browne, J. Görres, J. G. Ross, M. Wiescher, R. E. Azuma, J. D. King, J. B. Vise, and M. Buckby, “The Influence of Low-Energy Resonances on the Reaction Rate of 18O(α, γ)22Ne,” Nuclear Physics A 567 (1994), 146–64.Google Scholar
  76. 76.
    U. Giesen, C. P. Browne, J. Görres, S. Graff, C. Iliadis, H.-P. Trautvetter, M. Wiescher, W. Harms, et al., “The Astrophysical Implications of Low-Energy Resonances in 22Ne + α,” Nuclear Physics A 561 (1993), 95–111.Google Scholar
  77. 77.
    For example, K. M. Subotić, R. Ostojić, and B. Z. Stepančić, “Study of the 19F(pγ)20Ne Radiative Capture Reaction from 0.2–1.2 MeV,” Nuclear Physics A 331 (1979), 491–501.Google Scholar
  78. 78.
    E. T. Clifford, “An Investigation of the Isospin Properties of the 13.411 MeV State of 20Ne” (Master’s thesis, University of Toronto, 1974).Google Scholar
  79. 79.
    M. Wiescher, J. Görres, and H. Schatz, “Break-Out Reactions from the CNO Cycles,” Journal of Physics G: Nuclear and Particle Physics 25 (1999), R133–R161.Google Scholar
  80. 80.
    A. Couture, M. Beard, M. Couder, J. Görres, L. Lamm, P. J. LeBlanc, H. Y. Lee, S. O’Brien, et al., “Measurement of the F19(pγ)Ne20 Reaction and Interference Terms from E c.m.=200−760 keV,” Physical Review C 77 (2008), 015802.Google Scholar
  81. 81.
    R. E. Azuma, E. Uberseder, E. C. Simpson, C. R. Brune, H. Costantini, R. J. de Boer, J. Görres, M. Heil, et al., “AZURE: An R-Matrix Code for Nuclear Astrophysics,” Physical Review C 81 (2010), 045805.Google Scholar
  82. 82.
    C. Rolfs and W. S. Rodney, “Proton Capture by 15N at Stellar Energies,” Nuclear Physics A 235 (1974), 450–59.Google Scholar
  83. 83.
    A. Redder, H. W. Becker, H. Lorenz-Wirzba, C. Rolfs, P. Schmalbrock, and H. P. Trautvetter, “The 15N(pα 0)12C Reaction at Stellar Energies,” Zeitschrift für Physik 305 (1982), 325–33.Google Scholar
  84. 84.
    H. Costantini et al., “LUNA” (ref. 2).Google Scholar
  85. 85.
    P. J. LeBlanc, G. Imbriani, J. Görres, M. Junker, R. E. Azuma, M. Beard, D. Bemmerer, A. Best, et al., “Constraining the S Factor of 15N(pγ)16O at Astrophysical Energies,” Physical Review C 82 (2010), 055804.Google Scholar
  86. 86.
    G. Imbriani, H. Costantini, A. Formicola, D. Bemmerer, R. Bonetti, C. Broggini, P. Corvisiero, J. Cruz, et al., “The Bottleneck of CNO Burning and the Age of Globular Clusters,” Astronomy and Astrophysics 420 (2004), 625–29; W. C. Haxton and A. M. Serenelli, “CN Cycle Solar Neutrinos and the Sun’s Primordial Core,” The Astrophysical Journal 687 (2008), 678–91.Google Scholar
  87. 87.
    G. Imbriani, H. Costantini, A. Formicola, A. Vomiero, C. Angulo, D. Bemmerer, R. Bonetti, C. Broggini, et al., “S-Factor of 14N(pγ)15O at Astrophysical Energies,” European Physics Journal A 25 (2005), 455–66; R. C. Runkle, A. E. Champagne, C. Angulo, C. Fox, C. Iliadis, R. Longland, and J. Pollanen, “Direct Measurement of the N14(pγ)O15 S Factor,” Physical Review Letters 94 (2005), 082503.Google Scholar
  88. 88.
    U. Schröder et al. (ref. 58).Google Scholar
  89. 89.
    R. J. deBoer, D. W. Bardayan, J. Görres, P. J. LeBlanc, K. V. Manukyan, M. T. Moran, K. Smith, W. Tan, et al., “Low Energy Scattering Cross Section Ratios of 14N(pp)14N,” Physical Review C 91 (2015), 045804.Google Scholar
  90. 90.
    Q. Li, J. Görres, R. J. deBoer, G. Imbriani, A. Best, A. Kontos, P. J. LeBlanc, E. Uberseder, and M. Wiescher, “Cross Section Measurement of 14N(pγ)15O in the CNO Cycle,” Physical Review C 93 (2016), 055806.Google Scholar
  91. 91.
    A. Lemut, M. Couder, D. Winklehner, U. Greife, A. Hodgkinson, D. Leitner, M. Leitner, J. S. Saba, et al., “Design of a 400 kV Deep Underground, High Detector Efficiency, High Target Density, High Beam Intensity Accelerator Facility,” Physical Review Accelerators and Beams 14 (2011), 100–101.Google Scholar
  92. 92.
    H. W. Drotleff, A. Denker, J. W. Hammer, H. Knee, S. Küchler, D. Streit, C. Rolfs, H. P. Trautvetter, “New 22Ne(αn)25Mg-Resonances at Very Low Energies Relevant for the Astrophysical s-Process,” Zeitschrift für Physik A 338 (1991), 367–68.Google Scholar
  93. 93.
    M. Heil, R. Detwiler, R. E. Azuma, A. Couture, J. Daly, J. Görres, F. Käppeler, R. Reifarth, et al., “The 13C(αn) Reaction and its Role as a Neutron Source for the s Process,” Physical Review C 78 (2008), 025803.Google Scholar
  94. 94.
    Sascha Falahat, Andreas Best, Manoel Couder, Joachim Görres, Karl-Ludwig Kratz, Uli Ott, Ed Stech, and Michael Wiescher, “A 3He Neutron Detector for the Measurement of Reactions,” Nuclear Instruments and Methods in Physics Research A 700 (2013), 53–58.Google Scholar
  95. 95.
    Andreas Best, Manoel Couder, Michael Famiano, Alberto Lemut, and Michael Wiescher, “Study of the Beam-Induced Neutron Flux and Required Shielding for DIANA,” Nuclear Instruments and Methods in Physics Research A 727 (2013), 104–8.Google Scholar
  96. 96.
    F. D. Becchetti, R. S. Raymond, R. O. Torres-Isea, A. Di Fulvio, S. D. Clarke, S. A. Pozzi, and M. Febbraro, “Deuterated-Xylene (Xylene-d10; EJ301D): A New, Improved Deuterated Liquid Scintillator for Neutron Energy Measurements without Time-of-Flight, Nuclear Instruments and Methods in Physics Research A 820 (2016), 112–20.Google Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Notre DameNotre DameUSA

Personalised recommendations