Physics in Perspective

, Volume 18, Issue 3, pp 249–282 | Cite as

How Einstein Did Not Discover

  • John D. Norton


What powered Einstein’s discoveries? Was it asking naïve questions, stubbornly? Was it a mischievous urge to break rules? Was it the destructive power of operational thinking? It was none of these. Rather, Einstein made his discoveries through lengthy, mundane investigations, pursued with tenacity and discipline. We have been led to think otherwise in part through Einstein’s brilliance at recounting in beguilingly simple terms a few brief moments of transcendent insight, and in part through our need to find a simple trick underlying his achievements. These ideas are illustrated with the examples of Einstein’s 1905 discoveries of special relativity and the light quantum.


discovery Albert Einstein light quantum relativity 


  1. 1.
    Michel Janssen and Christoph Lehner, eds., The Cambridge Companion to Einstein (Cambridge: Cambridge University Press, 2014).Google Scholar
  2. 2.
    Allan Franklin, “Physics Textbooks Don’t Always Tell the Truth,” Physics in Perspective 18 (2016), 3–57.Google Scholar
  3. 3.
    Carl Seelig, Albert Einstein: A Documentary Biography, trans. Mervyn Savill (London: Staples Press, 1956), 70–71. This remark is elsewhere reported as written “in a letter” to Franck by Einstein. Albrecht Fölsing, Albert Einstein: A Biography, trans. Ewald Osers (New York: Viking, 1997), 13, 743. The citation on 743 gives no date for the letter and is to another of Seelig’s works. I have not located a letter from Einstein to Franck with this content.Google Scholar
  4. 4.
    John A. Wheeler, “Albert Einstein 1879–1955,” Biographical Memoires of the National Academy of Sciences (Washington, DC: National Academy of Sciences, 1980), 102,
  5. 5.
    Wheeler footnotes a German edition, but his text gives the quote from the English translation. Philipp Frank, Einstein: His Life and Times, trans. George Rosen, ed. and rev. Shuichi Kusaka (New York: Alfred A. Knopf, 1947), 206.Google Scholar
  6. 6.
  7. 7.
    It is plausible that Frank was reporting correctly what Hilbert said. However, context matters and it is likely that Hilbert intended something narrow in his remarks. Einstein had been very slow to adopt and even disparaging of the four-dimensional methods of space-time geometry introduced by Hilbert’s Goettingen colleague, Hermann Minkowski. These methods were, presumably, something well known to “every boy in the streets of our mathematical Gottingen.” Hilbert’s own philosophical inclinations leant towards Immanuel Kant. Einstein dismissed the Kantian approach and, in his earlier years, favored a positivistic philosophy such as advanced by Ernst Mach. A Kantian in this time would be obliged to find that outlook naïve.Google Scholar
  8. 8.
    Ibid., 112.Google Scholar
  9. 9.
    Albert Einstein, “Zur Electrodynamik bewegter Körper,” Annalen der Physik 17 (1905), 891–921, translated as “On the Electrodynamics of Moving Bodies,” in H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl, The Principle of Relativity, trans. W. Perrett and G. B. Jeffery (London: Methuen and Co., 1923; repr., New York: Dover, 1952), 35–65.Google Scholar
  10. 10.
    Lorentz, et al., Principle (ref. 9), 39.Google Scholar
  11. 11.
    John D. Norton, “Einstein’s Investigations of Galilean Covariant Electrodynamics prior to 1905,” Archive for History of Exact Sciences 59 (2004), 45–105, on 49.Google Scholar
  12. 12.
  13. 13.
    Einstein remarked on the importance of the experimental effects of stellar aberration and Fizeau’s measurements of the speed of light in moving water in his discovery of special relativity. I have conjectured in Norton, “Einstein’s Investigations” (ref. 11), section 7, that their importance lay in them being experimental manifestations of the relativity of simultaneity.Google Scholar
  14. 14.
    Albert Einstein, “Über das Relativitätsprinzip und die ausdemselben gezogenen Folgerungen,” Jahrbuch der Radioaktivität und Elektronik 4 (1907), 411–62; on 413.Google Scholar
  15. 15.
    Thomas Levenson and Ross MacDonald, “Einstein’s Gift for Simplicity,” Discover, September 30, 2004,
  16. 16.
  17. 17.
    Albert Einstein, “Autobiographical Notes,” in P. A. Schilpp, ed., Albert Einstein, Philosopher-Scientist, 2nd ed. (1949; repr., New York: Tudor Publishing, 1951), 2–95. Reprinted with a correction as Albert Einstein: Autobiographical Notes (La Salle: Open Court, 1979), 49–50, 52–53.Google Scholar
  18. 18.
    Albert Einstein, “Autobiographische Skizze,” in Helle Zeit—Dunkle Zeit, ed. Carl Seelig (Zurich: Europa Verlag, 1956), 9–17, on 10.Google Scholar
  19. 19.
    Craig Loehle, Becoming a Successful Scientist: Strategic Thinking for Scientific Discovery (Cambridge: Cambridge University Press, 2010), 30–31.Google Scholar
  20. 20.
    Howard Gardner, Frames of Mind: The Theory of Multiple Intelligences (New York: Basic, 2011), 157.Google Scholar
  21. 21.
    Norton, “Einstein’s Investigations” (ref. 11), section 5; John D. Norton, “Chasing the Light: Einstein’s Most Famous Thought Experiment,” in Thought Experiments in Philosophy, Science and the Arts, ed. James Robert Brown, Mélanie Frappier, and Letitia Meynell (New York: Routledge, 2013), 123–40.Google Scholar
  22. 22.
    Max Wertheimer, Productive Thinking, enlarged ed. (New York: Harper & Bros., 1959), 213.Google Scholar
  23. 23.
    Ibid. 169.Google Scholar
  24. 24.
    Ibid. 170.Google Scholar
  25. 25.
    Norton, “Einstein’s Investigations” (ref. 11), section 5.Google Scholar
  26. 26.
    Norton, “Einstein’s Investigations” (ref. 11), section 5; “Chasing the Light” (ref. 21).Google Scholar
  27. 27.
    Albert Einstein, Relativity: The Special and the General Theory. A Popular Exposition, trans. R. W. Lawson (1917; London: Methuen & Co. 1920), chs. 9–10.Google Scholar
  28. 28.
    Albert Einstein, “On the Electrodynamics of Moving Bodies,” in Lorentz et al., Principle (ref. 9), 41.Google Scholar
  29. 29.
    Percy W. Bridgman, The Logic of Modern Physics (New York: MacMillan, 1927), 2.Google Scholar
  30. 30.
    Hans Reichenbach, Philosophy of Space and Time (New York: Dover, 1957).Google Scholar
  31. 31.
    Delo E. Mook and Thomas Vargish, Inside Relativity (Princeton: Princeton University Press, 1987), 54.Google Scholar
  32. 32.
    Delo E. Mook and Thomas Vargish, Inside Relativity (Princeton: Princeton University Press, 1987), 54.Google Scholar
  33. 33.
    Andreas Kamlah, “The Problem of Operational Definitions,” in Logic, Language, and the Structure of Scientific Theories, ed. W. Salmon and G. Wolters (Pittsburgh: University of Pittsburgh Press, 1994), 171–89, on 174.Google Scholar
  34. 34.
    Peter Galison, Einstein’s Clocks, Poincaré’s Maps: Empires of Time (New York: W. W. Norton & Co., 2003).Google Scholar
  35. 35.
    Ibid., 36–37.Google Scholar
  36. 36.
    For a lengthier appraisal, see Alberto A. Martinez, “Material History and Imaginary Clocks: Poincaré, Einstein, and Galison on Simultaneity,” Physics in Perspective 6 (2004), 224–40.Google Scholar
  37. 37.
    Ibid., 39.Google Scholar
  38. 38.
    Ibid., 37.Google Scholar
  39. 39.
    Ibid., 40.Google Scholar
  40. 40.
    Kendall Madden, “Physicist and Historian Peter Galison to Deliver Hofstadter Lecture on Telativity,” Stanford Report, May 16, 2005,
  41. 41.
    As quoted in Alice Calaprice, ed., The Ultimate Quotable Einstein (Princeton: Princeton University Press, 2011), 12, dated September 18, 1930.Google Scholar
  42. 42.
    Albert Einstein, letter to Jost Winteler, July 8, 1901. Doc. 115 in John Stachel et al., eds., The Collected Papers of Albert Einstein: Volume 1: The Early Years: 1879–1902 (Princeton: Princeton University Press, 1987). Translation in Calaprice, Quotable Einstein (ref. 41), 161.Google Scholar
  43. 43.
    Scott Thorpe, How to Think Like Einstein: Simple Ways to Break the Rules and Discover your Hidden Genius (Naperville, IL: Sourcebooks, 2015).Google Scholar
  44. 44.
    Einstein, “Über das Relativitätsprinzip” (ref. 14).Google Scholar
  45. 45.
    Gerald Holton, “Einstein, Michelson, and the ‘Crucial’ Experiment,” Isis 60 (1969), 132–97.Google Scholar
  46. 46.
    P. Lenard, “Ueber die lichtelektrische Wirkung,”Annalen der Physik 313(5) (1902), 149–98.Google Scholar
  47. 47.
    Albert Einstein, “Über einen die Erzeugung and Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,” Annalen der Physik 17 (1905), 132–48.Google Scholar
  48. 48.
    Robert Millikan, “Atomic Theories of Radiation,” Science 37(943) (1913), 119–33, on 132–33. His emphasis.Google Scholar
  49. 49.
    Robert Millikan, “A Direct Photoelectric Determination of Planck’s ‘h,’” Physical Review 7 (1916), 355–388, on 388.Google Scholar
  50. 50.
    Ibid., 355.Google Scholar
  51. 51.
    Max Planck, “Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum,” Verahndlungen der Deutschen physikalischen Gesellschaft 2 (1900), 237–45. (Presented, December 14, 1900.).Google Scholar
  52. 52.
    Einstein, Albert (1905). “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,” Annalen der Physik 17(6) (1905), 132–48.Google Scholar
  53. 53.
    John D. Norton, “Atoms Entropy Quanta: Einstein’s Miraculous Argument of 1905,” Studies in History and Philosophy of Modern Physics 37 (2006), 71–100; “Einstein’s Miraculous Argument of 1905: The Thermodynamic Grounding of Light Quanta,” in HQ1: Conference on the History of Quantum Physics, preprint 350, vol. 1, ed. C. Joas, C. Lehner, and J. Renn (Berlin: Max Planck Institute for the History of Science, 2008), 63–78,
  54. 54.
    Albert Einstein, “Folgerungen aus dem Capillaritätserscheinungen,” Annalen der Physik 4 (1901), 513–23.Google Scholar
  55. 55.
    Albert Einstein, “Ueber die thermodynamische Theorie der Potentialdifferenz zwischen Metallen and vollständig dissocierten Lösungen ihre Salze and über eine elektrische Methode zur Erforschung der Molecularkräfte,” Annalen der Physik 8 (1902), 798–814.Google Scholar
  56. 56.
    Albert Einstein, Eine neue Bestimmung der Moleküldimensionen (Bern: Buchdruckerei K. J. Wyss 1905); also in Annalen der Physik 19 (1906), 289–305.Google Scholar
  57. 57.
    Albert Einstein, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Annalen der Physik 17 (1905), 549–60.Google Scholar
  58. 58.
    “Es ist bemerkenswert, daß man zus Herleitung dieser Gleichung … keine Voraussetzung über das Gesetz zu machen braucht, nachdem sich die Moleküle bewegen.” Albert Einstein, “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,” Annalen Der Physik 17 (1905), 132–48, on 142.Google Scholar
  59. 59.
    Gilbert Grynberg, Alain Aspect, and Claude Fabre, Introduction to Quantum Optics: From the Semi-Classical Approach to Quantized Light (Cambridge: Cambridge University Press, 2010), 179.Google Scholar
  60. 60.
    Thomas S. Kuhn, Black-Body Theory and the Quantum Discontinuity (Oxford: Clarendon Press, 1978).Google Scholar
  61. 61.
    Albert Einstein, “Zur Theorie der Lichterzeugung and Licht Ausbreitung,” Annalen der Physik 20 (1906), 199–206, on 199.Google Scholar
  62. 62.
    Robert A. Millikan, “The Electron and the Light-Quant from the Experimental Point of View,” in Nobel Lectures, Physics 1922–1941 (Amsterdam: Elsevier, 1965), 61.Google Scholar
  63. 63.
    Morris H. Shamos, ed., Great Experiments in Physics: Firsthand Accounts from Galileo to Einstein (New York: Holt, Rinehart and Winston, 1959; repr., New York: Dover, 1987), 233.Google Scholar
  64. 64., “The Nobel Prize in Physics 1921,” accessed April 21, 2016,
  65. 65.
    John D. Norton, “General Covariance and the Foundations of General Relativity: Eight Decades of Dispute,” Reports on Progress in Physics 56 (1993), 791–858.Google Scholar
  66. 66.
    Michel Janssen, “‘No Success Like Failure …’: Einstein’s Quest for General Relativity, 1907–1920,” in Janssen and Lehner, Cambridge Companion (ref. 1), 167–227.Google Scholar
  67. 67.
    As quoted in Abraham Pais, “Subtle is the Lord…”: The Science and the Life of Albert Einstein (Oxford: Oxford University Press, 1982), 382.Google Scholar
  68. 68.
    As described in John D. Norton, “Einstein as the Greatest of the Nineteenth Century Physicists,” in Proceedings, Seventh Quadrennial Fellows Conference of the Center for Philosophy of Science (12–14 June 2012; Mugla, Turkey), 142–51,

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of History and Philosophy of ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations