Advertisement

Physics in Perspective

, Volume 17, Issue 2, pp 107–134 | Cite as

Pascual Jordan, Varying Gravity, and the Expanding Earth

  • Helge KraghEmail author
Article

Abstract

In the 1950s, surprising links were proposed between cosmological theory and the geological and paleontological sciences. These links were mainly provided by Paul Dirac’s hypothesis of 1937 that the gravitational constant G decreases with cosmic time. Pascual Jordan, famous for his pioneering contributions to quantum theory, took up Dirac’s hypothesis; after the end of World War II, Jordan developed its geophysical consequences, concluding that the Earth is expanding. Much of Jordan’s later scientific work focused on the expanding Earth and other aspects of the earth sciences relating to the varying-G hypothesis. This chapter in the history of science has received almost no attention from either scientists or historians. The article analyzes Jordan’s cosmo-geological work in relation to the somewhat similar efforts of other “expansionists” in the period that led to the plate tectonic revolution in the earth sciences.

Keywords

Pascual Jordan Paul Dirac László Egyed Robert Dicke Joel Fisher gravitational constant expanding Earth plate tectonics paleoclimatology 

References

  1. 1.
    Jürgen Ehlers and Engelbert Schücking, “‘Aber Jordan war der erste’: Zur Erinnerung an Pascual Jordan (1902–1980),” Physik Journal 1 (2002), 71–74.Google Scholar
  2. 2.
    Jordan’s contributions to quantum mechanics are amply documented in the rich historical literature on the subject. See, for example, Jagdish Mehra and Helmut Rechenberg, The Historical Development of Quantum Theory, vol. 6, part 1 (New York: Springer-Verlag, 2000) and Bert Schroer, “Pascual Jordan, Biographical Notes, his Contributions to Quantum Mechanics and his Role as a Protagonist of Quantum Field Theory,” in Pascual Jordan (19021980). Mainzer Symposium zum 100. Geburtstag, preprint no. 329 (Berlin: Max Planck Institute for the History of Science, 2007), 47–68. Available online from http://www.mpiwg-berlin.mpg.de/en/resources/preprints.html, accessed December 5, 2014.
  3. 3.
    Silvan S. Schweber, QED and the Men Who Made It: Dyson, Feynman, Schwinger and Tomonaga (Princeton: Princeton University Press, 1994), 5–11.Google Scholar
  4. 4.
    For a full biography of Jordan’s writings, see Wolf D. Beiglböck, “Pascual Jordan: Schriftenverzeichnis,” in Pascual Jordan (ref. 2), 175–206.Google Scholar
  5. 5.
    Richard H. Beyler, “Targeting the Organism: The Scientific and Cultural Context of Pascual Jordan’s Quantum Biology, 1932–1947,” Isis 87 (1996), 248–273.Google Scholar
  6. 6.
    Alan D. Beyerchen, Scientists under Hitler: Politics and the Physics Community in the Third Reich (New Haven: Yale University Press, 1977).Google Scholar
  7. 7.
    M. Norton Wise, “Pascual Jordan: Quantum Mechanics, Psychology, National Socialism,” in Monika Renneberg and Mark Walker, eds., Science, Technology and National Socialism (Cambridge: Cambridge University Press, 1994), 224–254.Google Scholar
  8. 8.
    Engelbert L. Schucking, “Jordan, Pauli, Politics, Brecht, and a Variable Gravitational Constant,” Physics Today 52 (October 1999), 26–31.Google Scholar
  9. 9.
    On Jordan’s philosophy of science and general world view, see Pascual Jordan, Der Naturwissenschaftler vor der Religiösen Frage: Abbruch einer Mauer (Oldenburg: Gerhard Stalling Verlag, 1963). See also Richard H. Beyler, “Ernst Pascual Jordan: Freedom vs. Materialism,” in Nicolaas A. Rupke, ed., Eminent Lives in Twentieth-Century Science & Religion (Frankfurt am Main: Peter Lang, 2009), 233–252.Google Scholar
  10. 10.
    Paul Dirac, “The Cosmological Constants,” Nature 139 (1937), 323. On Dirac’s cosmological theory, see Helge Kragh, “Cosmo-Physics in the Thirties: Towards a History of Dirac Cosmology,” Historical Studies in the Physical Sciences 13 (1982), 69–108; Kragh, Dirac: A Scientific Biography (Cambridge: Cambridge University Press, 1990), 223–246; and John D. Barrow and Frank J. Tipler, The Anthropic Cosmological Principle (Oxford: Clarendon Press, 1986), esp. 231–243.Google Scholar
  11. 11.
    Paul Dirac, “The Relation between Mathematics and Physics,” Proceedings of the Royal Society of Edinburgh 59 (1939), 122–139, on 139. See also Kragh, Dirac (ref. 10), 275–278 and Helge Kragh, “Mathematics and Physics: The Idea of a Pre-Established Harmony,” Science & Education (2014), doi:  10.1007/s11191-014-9724-8. [AU: please give citation to print version if possible] [HK: has not yet appeared with page numbers].
  12. 12.
    Paul Dirac, “A New Basis for Cosmology,” Proceedings of the Royal Society A 165 (1938), 199–208, on 204.Google Scholar
  13. 13.
    George Gamow, “History of the Universe,” Science 158 (1967), 766–769, on 767. On January 2, 1937, Dirac married Margit Wigner Balasz, the sister of the Hungarian-American physicist Eugene Wigner.Google Scholar
  14. 14.
    Herbert Dingle, “Modern Aristotelianism,” Nature 139 (1937), 784–786; Kragh, “Cosmo-Physics” (ref. 10); George Gale and Niall Shanks, “Methodology and the Birth of Modern Cosmological Inquiry,” Studies in History and Philosophy of Modern Physics 27 (1996), 279–296.Google Scholar
  15. 15.
    Arthur S. Eddington, “The Cosmological Controversy,” Science Progress 34 (1939), 225–236.Google Scholar
  16. 16.
    Subrahmanyan Chandrasekhar, “The Cosmological Constants,” Nature 139 (1937), 757–758; Daulat S. Kothari, “Cosmological and Atomic Constants,” Nature 142 (1938), 354–355.Google Scholar
  17. 17.
    Fritz Zwicky, “On the Theory and Observation of Highly Collapsed Stars,” Physical Review 55 (1939), 726–743, on 733; Walter Baade and Fritz Zwicky, “On Super-Novae,” Proceedings of the National Academy of Sciences 20 (1934), 254–259.Google Scholar
  18. 18.
    Pascual Jordan, Schwerkraft und Weltall: Grundlagen der theoretischen Kosmologie, 2nd rev. ed. (Braunschweig: Vieweg & Sohn, 1955), 137. On Jordan’s cosmological theories, see John North, The Measure of the Universe: A History of Modern Cosmology (Oxford: Oxford University Press, 1965), 205–208; Jagjit Singh, Great Ideas and Theories of Modern Cosmology (New York: Dover Publications, 1970), 229–235; and Helge Kragh, Matter and Spirit in the Universe: Scientific and Religious Preludes to Modern Cosmology (London: Imperial College Press, 2004), 175–185.Google Scholar
  19. 19.
    Pascual Jordan, Die Physik des 20. Jahrhhunderts (Braunschweig: Vieweg, 1936), 152. English translation: Jordan, Physics of the 20th Century, trans. Eleanor Oshry (New York: Philosophical Library, 1944).Google Scholar
  20. 20.
    Pascual Jordan, “Die physikalischen Weltkonstanten,” Die Naturwissenschaften 25 (1937), 513–517; Jordan, “Bemerkungen zur Kosmologie,” Annalen der Physik 32 (1939), 64–70; Jordan, “Über die Entstehung der Sterne,” Physikalische Zeitschrift 45 (1944), 183–190, 233–244.Google Scholar
  21. 21.
    Pascual Jordan, Der Herkunft die Sterne (Stuttgart: Hirzel, 1947); Jordan, “Formation of the Stars and Development of the Universe,” Nature 164 (1949), 637–640.Google Scholar
  22. 22.
    Hermann Bondi, Cosmology (Cambridge: Cambridge University Press), 164.Google Scholar
  23. 23.
    Jordan, “Entstehung der Sterne” (ref. 20), 190.Google Scholar
  24. 24.
    Paul Couderc, The Expansion of the Universe (London: Faber and Faber, 1952), 225.Google Scholar
  25. 25.
    Arthur E. Haas, “An Attempt to a Purely Theoretical Derivation of the Mass of the Universe,” Phys. Rev. 49 (1936), 411–412.Google Scholar
  26. 26.
    Jordan, “Bemerkungen” (ref. 20), 66; Jordan, “Formation of the Stars” (ref. 21), 638. The Haas-Jordan idea of a zero-energy universe was independently reintroduced by several later cosmologists and is today often ascribed to Edward Tryon, “Is the Universe a Quantum Fluctuation?” Nature 246 (1973), 396–397.Google Scholar
  27. 27.
    Wolfgang Pauli, “Raum, Zeit und Kausalität in der modernen Physik,” Scientia 59 (1936), 65–76, on 76; Pascual Jordan, “Zur empirischen Kosmologie,” Die Naturwissenschaften 26 (1938), 417–421.Google Scholar
  28. 28.
    Fritz G. Houtermans and Pascual Jordan, “Über die Annahme der zeitlichen Veränderlichkeit des β-Zerfalls und die Möglichkeiten ihrer experimentellen Prüfung,” Zeitschrift für Naturforschung 1 (1946), 125–130. Specifically, they assumed that \(\frac{dN}{dt} = - \lambda^{*} N\left( t \right)\frac{1}{\sqrt t } \;{\text{or}}\;N\left( t \right) = N_{0} \exp \left( { - 2\lambda^{*} \sqrt t } \right)\).Google Scholar
  29. 29.
    Helmut Hönl, “Zwei Bemerkungen zum kosmologischen Problem,” Ann. Phys. (Berlin) 6 (1949), 169–176. See also Richard Dehm, “Geologisches Erdalter und astrophysikalisches Weltalter,” Die Naturwissenschaften 36 (1949), 166–171.Google Scholar
  30. 30.
    Hubert Goenner, “Some Remarks on the Genesis of Scalar-Tensor Theories,” General Relativity and Gravitation 44 (2012), 2077–2097; Carl H. Brans and Robert H. Dicke, “Mach’s Principle and a Relativistic Theory of Gravitation,” Phys. Rev. 124 (1961), 925–935; Carl H. Brans, “Varying Newton’s Constant: A Personal History of Scalar-Tensor Theories,” Einstein Online 4 (2010), 1002, http://www.einstein-online.info/spotlights/scalar-tensor/?searchterm=Brans, accessed December 5, 2014. On the importance of the Brans-Dicke theory, see David Kaiser, “Is ψ just a ψ? Pedagogy, Practice, and the Reconstitution of General Relativity, 1942–1975,” Stud. Hist. Phil. Mod. Phys. 29 (1998), 321–338.
  31. 31.
    Engelbert L. Schücking, “Jürgen Ehlers,” in Bernd G. Schmidt, ed., Einstein’s Field Equations and their Physical Implications (Berlin: Springer-Verlag), v–vi, on vi.Google Scholar
  32. 32.
    Joshua N. Goldberg, “US Air Force Support of General Relativity, 1956–1972,” in Jean Eisenstaedt and A. J. Kox, eds., Studies in the History of General Relativity (Boston: Birkhäuser, 1992), 89–102.Google Scholar
  33. 33.
    Pascual Jordan, “Fünfdimensionale Kosmologie,” Astronomische Nachrichten 276 (1948), 193–208.Google Scholar
  34. 34.
    Peter G. Bergmann, “Unified Field Theory with Fifteen Field Variables,” Annals of Mathematics 49 (1948), 255–264.Google Scholar
  35. 35.
    Pascual Jordan, “Zum gegenwärtigen Stand der Diracschen kosmologischen Hypothesen,” Zeitschrift für Physik 157 (1959), 112–121. See also Dieter R. Brill, “Review of Jordan’s Extended Theory of Gravitation,” in Christian Møller, ed., Evidence for Gravitational Theories (New York: Academic Press, 1962), 50–68.Google Scholar
  36. 36.
    Helmut Hönl and Heinz Dehnen, “Erlaubt die 3° Kelvin-Strahlung Rückschlüsse auf eine konstante oder veränderliche Gravitationszahl?” Zeitschrift für Astrophysik 68 (1968), 181–189.Google Scholar
  37. 37.
    Pascual Jordan,”Bemerkungen zu der Arbeit von H. Hönl und H. Dehnen,” Z. Astrophys. 68 (1968), 201–203; Jordan, The Expanding Earth: Some Consequences of Dirac’s Gravitation Hypothesis (Oxford: Pergamon Press, 1971), xv.Google Scholar
  38. 38.
    Jordan, Schwerkraft (ref. 18), vi.Google Scholar
  39. 39.
    Ibid., 223.Google Scholar
  40. 40.
    Pascual Jordan, “Four Lectures about Problems of Cosmology,” in António Giáo, ed., Cosmological Models (Lisbon: Instituto Gulbenkian de Ciêcia, 1964), 101–136, on 111.Google Scholar
  41. 41.
    Jordan, Expanding Earth (ref. 37), x.Google Scholar
  42. 42.
    Ibid., xi.Google Scholar
  43. 43.
    Ibid., 10.Google Scholar
  44. 44.
    Pascual Jordan, “The Expanding Earth,” in Jagdish Mehra, ed., The Physicist’s Conception of Nature (Dordrecht: Reidel, 1973), 60–70, on 61.Google Scholar
  45. 45.
    Wolfgang Pauli to Pascual Jordan, October 1, 1952, in Karl von Meyenn, ed., Wolfgang Pauli: Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., vol. 4, part 1 (Berlin: Springer, 1996), 737.Google Scholar
  46. 46.
    Pascual Jordan to Wolfgang Pauli, December 17, 1952, in Meyenn, Wolfgang Pauli (ref. 45), 800.Google Scholar
  47. 47.
    Pascual Jordan, “Zum Problem der Erdexpansion,” Die Naturwissenschaften 48 (1961), 417–425, on 417.Google Scholar
  48. 48.
  49. 49.
    Some of Fisher’s publications and abstracts are listed in Ruth King et al., eds., Bibliography of North American Geology, 19501959 (Washington D.C.: United States Government Printing Office, 1965). The bibliography includes an abstract by Fisher with the title “Arguments for a Solid Core of the Earth at 0° K.”Google Scholar
  50. 50.
    On GRF and its history, see http://www.gravityresearchfoundation.org/, accessed December 5, 2014. Among the prize winners of the 1950s and 1960s were notables such as John Wheeler, Hermann Bondi, Roger Penrose, Stephen Hawking, and Dennis Sciama.
  51. 51.
  52. 52.
    Pascual Jordan, “The Theory of a Variable ‘Constant’ of Gravitation” (1954), http://www.gravityresearchfoundation.org/pdf/awarded/1954/jordan.pdf, accessed December 5, 2014.
  53. 53.
    Pascual Jordan, “Empirical Tests of Dirac’s Hypothesis about Gravitation” (1967), http://www.gravityresearchfoundation.org/pdf/awarded/1967/jordan.pdf, accessed December 5, 2014.
  54. 54.
    Pascual Jordan, “On the Possibility of Avoiding Ramsey’s Hypothesis in Formulating a Theory of Earth Expansion,” in Stanley K. Runcorn, ed., The Application of Modern Physics to the Earth and Planetary Interiors (London: Wiley Interscience, 1969), 55–62, on 55.Google Scholar
  55. 55.
    Alfred Wegener, The Origin of Continents and Oceans (New York: Dover Publications, 1966), 35–40. Originally published as Wegener, Die Entstehung der Kontinente und Ozeane (Braunschweig: Vieweg, 1915).Google Scholar
  56. 56.
    Hans C. Joksch, “Statistische Analyse der hypsometrischen Kurve der Erde,” Zeitschrift für Geophysik 21 (1955), 109–112.Google Scholar
  57. 57.
    Pascual Jordan, “Empirical Confirmation of Dirac’s Hypothesis of Diminishing Gravitation,” in Recent Developments in General Relativity (Oxford: Pergamon Press, 1962), 283–288, on 286.Google Scholar
  58. 58.
    Pascual Jordan, “Geophysical Consequences of Dirac’s Hypothesis,” Reviews of Modern Physics 34 (1962), 596–600, on 599.Google Scholar
  59. 59.
    Jordan, Schwerkraft (ref. 18), 228.Google Scholar
  60. 60.
    Jordan, Expanding Earth (ref. 37), 47.Google Scholar
  61. 61.
    Horst Gerstenkorn, “Veränderungen der Erde-Monde-System durch Gezeitenreibung in der Vergangenheit bei zeitabhängiger Gravitationskonstante,” Z. Astrophys. 42 (1957), 137–155. On Gerstenkorn and lunar theory, see Stephen G. Brush, A History of Modern Planetary Science (Cambridge: Cambridge University Press, 1996), 3:200–202.Google Scholar
  62. 62.
    Pascual Jordan, Jürgen Ehlers, and Wolfgang Kundt, “Quantitatives zur Diracschen Schwerkraft-Hypothese,” Z. Phys. 178 (1964), 501–518, on 513.Google Scholar
  63. 63.
    Edward Teller, “On the Change of Physical Constants,” Phys. Rev. 73 (1948), 801–802. See also Helge Kragh, “Cosmonumerology and Empiricism: The Dirac-Gamow Dialogue,” Astronomy Quarterly 8 (1991), 109–126.Google Scholar
  64. 64.
    Jordan, Schwerkraft (ref. 18), 235.Google Scholar
  65. 65.
    Jordan, Expanding Earth (ref. 37), 158; Jordan, “Über die Wolkenhülle der Venus,” Akademie der Wissenschaften und der Literatur in Mainz, Mathematisch-Naturwissenschaftlichen Klasse (1967), 43–53.Google Scholar
  66. 66.
    Jordan, “Four Lectures” (ref. 40), 115.Google Scholar
  67. 67.
    Hans-Jost Binge, “Vulkanismus und Intrusionen als Folge der Zeitabhängigkeit von κ in der Jordanschen Kosmologie,” Z. Naturforsch. A 10 (1955), 900; Jordan, Schwerkraft (ref. 18), 233; Jordan, “Expanding Earth” (ref. 37), 68–69.Google Scholar
  68. 68.
    Hans-Jost Binge, Folgerungen der Diracschen Hypothese für die Physik des Erdkörpers, unpublished dissertation, Hamburg University, 1962; Jordan, Expanding Earth (ref. 37), 118–121.Google Scholar
  69. 69.
    Jordan, Expanding Earth (ref. 37), 123.Google Scholar
  70. 70.
    Richard Nunan, “Expanding Earth Theories,” in Gregory A. Good, ed., Sciences of the Earth: An Encyclopedia of Events, People, and Phenomena, vol. 2 (New York: Garland Publishing, 1998), 243–250; Henry R. Frankel, The Continental Drift Controversy: Volume II: Paleomagnetism and Confirmation of Drift (Cambridge: Cambridge University Press, 2012), 278–354.Google Scholar
  71. 71.
    S. Warren Carey, “The Expanding Earth—an Essay Review,” Earth Science Reviews 11 (1975), 105–143, on 134; Carey, The Expanding Earth (Amsterdam: Elsevier, 1976), 446.Google Scholar
  72. 72.
    Jordan, Expanding Earth (ref. 37), 49, 66.Google Scholar
  73. 73.
    László Egyed, “On the Origin and Constitution of the Upper Part of the Earth’s Mantle,” Geologische Rundschau 50 (1960), 251–258; Egyed, “The Expanding Earth?” Nature 197 (1963), 1059–1060; Egyed, Physik der Festen Erde (Leipzig: Teubner, 1969).Google Scholar
  74. 74.
    Arthur Holmes, Principles of Physical Geology (New York: Ronald Press, 1965), 983–987.Google Scholar
  75. 75.
    Pascual Jordan, Die Expansion der Erde: Folgerungen aus der Diracschen Gravitationshypothese (Braunschweig: Vieweg & Sohn, 1966), 80–83; Jordan, Ehlers, and Kundt, “Quantitatives” (ref. 62), 507.Google Scholar
  76. 76.
    Robert H. Dicke, “Principle of Equivalence and the Weak Interactions,” Rev. Mod. Phys. 29 (1957), 355–362; Dicke, “Dirac’s Cosmology and the Dating of Meteorites,” Nature 183 (1959), 170–171; Dicke, “The Earth and Cosmology,” Science 138 (1962), 653–664. Interviews with Dicke conducted by the American Institute of Physics between 1975 and 1988, http://www.aip.org/history/ohilist/transcripts.html, accessed December 5, 2014. See also Helge Kragh, “Gravitation and the Earth Sciences: The Contributions of Robert Dicke,” arxiv:1501.04293 [physics. Hist-ph], 2015.
  77. 77.
    Dicke, “Earth and Cosmology” (ref. 76).Google Scholar
  78. 78.
    Ibid., 660. See also Charles T. Murphy and Robert H. Dicke, “The Effects of a Decreasing Gravitational Constant in the Interior of the Earth,” Proceedings of the American Philosophical Society 108 (1964), 224–246.Google Scholar
  79. 79.
    Paolo Sudiro, “The Earth Expansion Theory and its Transition from Scientific Hypothesis to Pseudoscientific Belief,” History of Geo- and Space Sciences 5 (2014), 135–148.ADSCrossRefGoogle Scholar
  80. 80.
    Pascual Jordan, “Die Bedeutung der Diracschen Hypothese für die Geophysik,” Akademie der Wissenschaften und der Literatur in Mainz, Mathematisch-Naturwissenschaftlichen Klasse (1959), 771–795, on 795.Google Scholar
  81. 81.
    Jordan, “Geophysical Consequences” (ref. 58), 600.Google Scholar
  82. 82.
    Wolfgang Kundt, “Jordan’s ‘Excursion’ into Geophysics,” in Pascual Jordan (ref. 2), 123–132. Jordan and Kundt wrote in 1961 an important paper on general relativity theory, which has recently been republished in English translation. See General Relativity and Gravitation 46 (2014), 1659.Google Scholar
  83. 83.
    Pascual Jordan, “Über den positivischen Begriff der Wirklichkeit,” Die Naturwissenschaften 22 (1934), 485–490; Richard H. Beyler, “From Positivism to Organicism: Pascual Jordan’s Interpretations of Modern Physics in Cultural Context,” PhD diss., Harvard University, 1996; Beyler, “Ernst Pascual Jordan” (ref. 9).Google Scholar
  84. 84.
    Jordan, “Physikalischen Weltkonstanten” (ref. 20), 515.Google Scholar
  85. 85.
    Jordan, Expanding Earth (ref. 37), 19.Google Scholar
  86. 86.
    Goenner, “Some Remarks” (ref. 30).Google Scholar
  87. 87.
    Homer E. Le Grand, Drifting Continents and Shifting Theories (Cambridge: Cambridge University Press, 1988), 227.Google Scholar
  88. 88.
    Jordan’s work on the expanding Earth is not mentioned in Frankel, Continental Drift Controversy (ref. 70), Nunan, “Expanding Earth Theories” (ref. 70), Beyler, Positivism to Organicism (ref. 83), or Richard Nunan, “The Theory of an Expanding Earth and the Acceptability of Guiding Assumptions,” in Arthur Donovan, Larry Laudan, and Rachel Laudan, eds., Scrutinizing Science: Empirical Studies of Scientific Change (Dordrecht: Kluwer Academic, 1988), 289–313.Google Scholar
  89. 89.
    Jürgen Müller and Liliane Biskukep, “Variations of the Gravitational Constant from Lunar Laser Ranging Data,” Classical and Quantum Gravity 24 (2007), 4533–4538.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Niels Bohr InstituteCopenhagen UniversityCopenhagenDenmark

Personalised recommendations