Advertisement

Geochemical constrains on dolomitization pathways of the Upper Jurassic carbonate rocks in the Geneva Basin (Switzerland and France)

  • Y. MakhloufiEmail author
  • E. Samankassou
Article
  • 27 Downloads

Abstract

The Kimmeridgian-Tithonian carbonate rocks of the Geneva Basin represent potential reservoirs for geothermal energy exploitation. Based on petrographic data, a previous study (Makhloufi et al. 2018) reported three different stages of dolomitization affecting these carbonate rocks, followed by dedolomitization. The present study focuses on the geochemical characterization of these stages based on O, C and Sr isotopes of dolomites and dedolomites. The oxygen isotopic values of early dolomite are depleted compared to the values of Late Jurassic marine cements. This is interpreted to reflect dolomite precipitation from an oxygen-enriched fluid, likely evaporitic. Carbon isotopic values are close to the composition of well-preserved Late Jurassic cements suggestive of abiotic precipitation. These findings are consistent with a scenario of reflux type dolomitization induced by high-frequency sea-level changes producing pulses of dolomitizing brines. Late dolomitization represents an advanced level of replacement. Isotopic data exhibits depleted oxygen composition pointing towards burial diagenesis and is interpreted as the results of shallow burial over-dolomitization. Ages provided by radiogenic strontium isotopes data are consistent with an early first stage of dolomitization followed by late burial dolomite. Dedolomitization is observed at different orders of magnitude and might results from the interaction with meteoric water initiating the dissolution of both early and late dolomites. This dedolomitization would have taken place during long-term emersion events or after the exhumation. The results presented in this work provide further understanding of the processes involved in dolomitization under the influence of high-frequency sea-level fluctuations and the evolution of dolomitic fabrics during burial.

Keywords

Early diagenesis Dolomite Dedolomite Seepage-reflux Upper Jurassic Geneva Basin 

Notes

Acknowledgements

This study was funded by the Services Industriels de Genève (SIG) as a part of the GEothermy 2020 project. We are grateful to an anonymous reviewer for constructive comments on the earlier version of the manuscript. The Editor W. Winkler provided helpful advice which is thankfully acknowledged. We thank Michael M. Joachimski (University of Erlangen-Nürnberg, Germany) for carrying out the oxygen and carbon stable isotope analyses and Massimo Chiaradia (Department of Earth Sciences, University of Geneva) for providing the strontium isotope analyses. We also thank François Gischig, Nino Isabella Valenzi and Agathe Martignier from the Department of Earth Sciences, University of Geneva, Switzerland, for their help with thin section manufacturing, powder sampling, CL and S.E.M. imaging, respectively. Maud Brentini, Elme Rusillon, Jérôme Chablais (HydroGeo Environnement, Geneva) as well as Nicolas Clerc (GESDEC, Geneva) provided their help during fieldwork.

Supplementary material

15_2019_350_MOESM1_ESM.xlsx (14 kb)
Supplementary material 1 (XLSX 13 kb)

References

  1. Allan, J. R., & Matthews, R. K. (1982). Isotope signatures associated with early meteoric diagenesis. Sedimentology, 29(6), 797–817.CrossRefGoogle Scholar
  2. Allan, J. R., & Wiggins, W. D. (1993). Dolomite reservoirs: geochemical techniques for evaluating origin and distribution. Tulsa: American Association of Petroleum Geologists.Google Scholar
  3. Ayora, C., Taberner, C., Saaltink, M. W., & Carrera, J. (1998). The genesis of dedolomites: a discusion based on reactive transport modeling. Journal of Hydrology, 209(1–4), 346–365.CrossRefGoogle Scholar
  4. Baldermann, A., Deditius, A. P., Dietzel, M., Fichtner, V., Fischer, C., Hippler, D., et al. (2015). The role of bacterial sulfate reduction during dolomite precipitation: implications from Upper Jurassic platform carbonates. Chemical Geology, 412, 1–14.CrossRefGoogle Scholar
  5. Banner, J. L., Hanson, G. N., & Meyers, W. J. (1988). Water-rock interaction history of regionally extensive dolomites of the Burlington-Keokuk Formation (Mississippian): isotopic evidence. In V. Shukla & P. A. Baker (Eds.), Sedimentology and Geochemistry of Dolostones (Vols. 1-Book, Section, Vol. 43, pp. 97–113). SEPM Society for Sedimentary Geology.  https://doi.org/10.2110/pec.88.43.0097.CrossRefGoogle Scholar
  6. Bernier, P. (1984). Les formations carbonatées du Kimméridgien et du Portlandien dans le Jura méridional: stratigraphie, micropaléontologie, sédimentologie. PhD dissertation, Lyon: Université de Lyon, Laboratoire de Géologie, 800 p.Google Scholar
  7. Bernier, P., & Enay, R. (1972). Figures d’émersion temporaire et indices de sédimentation à très faible profondeur dans le Portlandien et le Kimméridgien supérieur (Calcaires en plaquettes) du Grand-Colombier-de-Culoz (Ain, France). Bulletin de la Société Géologique de France, 7(1–5), 281–292.CrossRefGoogle Scholar
  8. Blaise, T., Barbarand, J., Kars, M., Ploquin, F., Aubourg, C., Brigaud, B., et al. (2014). Reconstruction of low temperature (< 100 °C) burial in sedimentary basins: a comparison of geothermometer in the intracontinental Paris Basin. Marine and Petroleum Geology, 53, 71–87.  https://doi.org/10.1016/j.marpetgeo.2013.08.019.CrossRefGoogle Scholar
  9. Blaise, T., Tarantola, A., Cathelineau, M., Boulvais, P., Techer, I., Rigaudier, T., et al. (2015). Evolution of porewater composition through time in limestone aquifers: salinity and D/H of fluid inclusion water in authigenic minerals (Jurassic of the eastern Paris Basin, France). Chemical Geology, 417, 210–227.  https://doi.org/10.1016/j.chemgeo.2015.10.014.CrossRefGoogle Scholar
  10. Blanc-Alétru, M.-C. (1995). Importance des discontinuités dans l’enregistrement sédimentaire de l’urgonien jurassien: micropaléontologie, sédimentologie, minéralogie et stratigraphie séquentielle (PhD Thesis). Grenoble: Laboratoire de géologie de l’Université Joseph Fourier de Grenoble.Google Scholar
  11. Bone, Y., James, N. P., & Kyser, T. K. (1992). Synsedimentary detrital dolomite in Quaternary cool-water carbonate sediments, Lacepede shelf, South Australia. Geology, 20(2), 109–112.CrossRefGoogle Scholar
  12. Bontognali, T. R. R., McKenzie, J. A., Warthmann, R. J., & Vasconcelos, C. (2014). Microbially influenced formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria. Terra Nova, 26(1), 72–77.  https://doi.org/10.1111/ter.12072.CrossRefGoogle Scholar
  13. Braithwaite, C. J. R. (1991). Dolomites, a review of origins, geometry and textures. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 82(2), 99–112.CrossRefGoogle Scholar
  14. Brigaud, B., Pucéat, E., Pellenard, P., Vincent, B., & Joachimski, M. M. (2008). Climatic fluctuations and seasonality during the Late Jurassic (Oxfordian–Early Kimmeridgian) inferred from δ18O of Paris Basin oyster shells. Earth and Planetary Science Letters, 273(1), 58–67.  https://doi.org/10.1016/j.epsl.2008.06.015.CrossRefGoogle Scholar
  15. Budd, D. A. (1997). Cenozoic dolomites of carbonate islands: their attributes and origin. Earth-Science Reviews, 42(1), 1–47.  https://doi.org/10.1016/S0012-8252(96)00051-7.CrossRefGoogle Scholar
  16. Cander, H. S. (1994). An example of mixing-zone dolomite, middle Eocene Avon Park Formation, Floridan Aquifer system. Journal of Sedimentary Research, 64(3), 615–629.Google Scholar
  17. Cander, H. S., Kaufman, J., Daniels, L. D., & Meyers, W. J. (1988). Regional dolomitization of shelf carbonates in the Burlington Keokuk formation (Mississippian), Illinois and Missouri: constraints from cathodoluminescent zonal stratigraphy. Sedimentology and Geochemistry of Dolostones, 43, 129–144.CrossRefGoogle Scholar
  18. Charollais, J.-J., Weidmann, M., Berger, J.-P., Engesser, B., Hotellier, J.-F., Gorin, G. E., et al. (2007). La Molasse du bassin franco-genevois et son substratum. Archives des Sciences Genève, 60, 59–174.Google Scholar
  19. Charollais, J., Wernli, R., Mastrangelo, B., Metzger, J., Busnardo, R., Clavel, B., et al. (2013). Présentation d’une nouvelle carte géologique du Vuache et du Mont de Musieges (Haute-Savoie, France). Stratigraphie et tectonique. Archives des Sciences Genève, 66, 1–64.Google Scholar
  20. Choquette, P. W., & Hiatt, E. E. (2008). Shallow-burial dolomite cement: a major component of many ancient sucrosic dolomites. Sedimentology, 55(2), 423–460.CrossRefGoogle Scholar
  21. Clavel, B., & Charollais, J. (1989). Stratigraphie de l’Hauterivien du Jura méridional. Mémoires de la Société Neuchâteloise des Sciences Naturelles, XI, 291–298.Google Scholar
  22. Conrad, M. A. (1969). Les calcaires urgoniens dans la région entourant Genève. Eclogae Geologicae Helvetiae, 61(1), 1–79.Google Scholar
  23. Coplen, T. (1982). Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. Eos, Transactions American Geophysical Union, 63(45), 861–862.CrossRefGoogle Scholar
  24. Coplen, T. B., Kendall, C., & Hopple, J. (1983). Comparison of stable isotope reference samples. Nature, 302(5905), 236–238.CrossRefGoogle Scholar
  25. Deville, Q. (1988). Analyse sédimentologique et séquentielle des terrains les plus anciens du Salève: les traces d’un récif à la base (?) du Kimmeridgien. Archives des sciences Genève, 40, 65–84.Google Scholar
  26. Deville, Q. (1990). Chronostratigraphie et lithostratigraphie synthétique du Jurassique supérieur et du Crétacé inférieur de la partie méridionale du Grand Saleve (Haute-Savoie, France). Archives des Sciences. Genève, 43, 215–235.Google Scholar
  27. Disler, C. (1914). Stratigraphie und Tektonik des Rotliegenden und der Trias beiderseits des Rheins zwischen Rheinfelden und Augst, Ph.D. dissertation, Basel: Universität Basel, 96 p.Google Scholar
  28. Dorobek S.L., Smith T.M., Whitsitt P.M. (1993) Microfabrics and Geochemistry of Meteorically Altered Dolomite in Devonian and Mississippian Carbonates, Montana and Idaho. In R. Rezak & D.L. Lavoie (Eds.), Carbonate Microfabrics. Frontiers in Sedimentary Geology. New York, NY: Springer.Google Scholar
  29. Dromart, G., Garcia, J.-P., Gaumet, F., Picard, S., Rousseau, M., Atrops, F., et al. (2003). Perturbation of the carbon cycle at the Middle/Late Jurassic transition: geological and geochemical evidence. American Journal of Science, 303(8), 667–707.  https://doi.org/10.2475/ajs.303.8.667.CrossRefGoogle Scholar
  30. Enay, R. (1969). Le prétendu” Argovien” d’Entremont (Haute-Savoie). Découverte de la zone à Platynota (Kimméridgien inférieur) au Vuache (Jura méridional). Société de Physique et d’Histoire Naturelle de Genève, 4(1), 68–76.Google Scholar
  31. Evamy, B. D. (1967). Dedolomitization and the development of rhombohedral pores in limestones. Journal of Sedimentary Research, 37(4), 1204–1215.Google Scholar
  32. Favre, J. A., Risler, E., & Lossier, L. (1880). Description géologique du canton de Genève. A. Cherbuliez.Google Scholar
  33. Fondeur, C., Gottis, M., Rouire, J., & Vatan, A. (1954). Quelques aspects de la dolomitisation au Jurassique en France. XIXème Congr. Géol. Intern., Alger, 15, 471–491.Google Scholar
  34. Fookes, E. (1995). Development and eustatic control of an Upper Jurassic reef complex (Saint Germain-de-Joux, Eastern France). Facies, 33(1), 129–149.CrossRefGoogle Scholar
  35. Fouke, B. W., Schlager, W., Vandamme, M. G., Henderiks, J., & Van Hilten, B. (2005). Basin-to-platform chemostratigraphy and diagenesis of the Early Cretaceous Vercors Carbonate Platform, SE France. Sedimentary Geology, 175(1–4), 297–314.CrossRefGoogle Scholar
  36. Friedman, I., & O’Neil, J. R. (1977). Compilation of stable isotope fractionation factors of geochemical interest. U.S. Geological Survey, 440(KK), 11.Google Scholar
  37. Gao, G. (1990). Geochemical and isotopic constraints on the diagenetic history of a massive stratal, late Cambrian (Royer) dolomite, Lower Arbuckle Group, Slick Hills, SW Oklahoma, USA. Geochimica et Cosmochimica Acta, 54(7), 1979–1989.CrossRefGoogle Scholar
  38. Gao, G., & Land, L. S. (1991). Early Ordovician cool creek dolomite, middle arbuckle group, slick hills, SW Oklahoma, USA: origin and modification. Journal of Sedimentary Research, 61(2), 161–173.Google Scholar
  39. Giorgioni, M., Iannace, A., D’Amore, M., Dati, F., Galluccio, L., Guerriero, V., et al. (2016). Impact of early dolomitization on multi-scale petrophysical heterogeneities and fracture intensity of low-porosity platform carbonates (Albian-Cenomanian, southern Apennines, Italy). Marine and Petroleum Geology, 73, 462–478.CrossRefGoogle Scholar
  40. Heim, A. (1922). Le sondage pour la recherche du pétrole à Challex (Ain). Eclogae Geologicae Helvetiae, 17(1), 115–123.Google Scholar
  41. Hoefs, J. (1987). Stable isotope geochemistry; Third, completely revised and enlarged. New York: Springer.CrossRefGoogle Scholar
  42. Irwin, H., Curtis, C., & Coleman, M. (1977). Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature, 269(5625), 209–213.CrossRefGoogle Scholar
  43. James, N. P., Bone, Y., & Kyser, T. K. (1993). Shallow burial dolomitization and dedolomitization of mid-Cenozoic, cool-water, calcitic, deep-self limestones, Southern Australia. Journal of Sedimentary Research, 63(3), 528–538.CrossRefGoogle Scholar
  44. Joachimski, M. M. (1994). Subaerial exposure and deposition of shallowing upward sequences: evidence from stable isotopes of Purbeckian peritidal carbonates (basal Cretaceous), Swiss and French Jura Mountains. Sedimentology, 41(4), 805–824.CrossRefGoogle Scholar
  45. Jones, B., Pleydell, S. M., Ng, K.-C., & Longstaffe, F. J. (1989). Formation of poikilotopic calcite-dolomite fabrics in the Oligocene-Miocene Bluff formation of Grand Cayman, British West Indies. Bulletin of Canadian Petroleum Geology, 37(3), 255–265.Google Scholar
  46. Kenny, R. (1992). Origin of disconformity dedolomite in the Martin Formation (Late Devonian, northern Arizona). Sedimentary Geology, 78(1–2), 137–146.CrossRefGoogle Scholar
  47. Kim, S.-T., Mucci, A., & Taylor, B. E. (2007). Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: Revisited. Chemical Geology, 246(3–4), 135–146.CrossRefGoogle Scholar
  48. Kyser, T. K., James, N. P., & Bone, Y. (2002). Shallow Burial Dolomitization and Dedolomitization of Cenozoic Cool-Water Limestones, Southern Australia: Geochemistry and Origin. Journal of Sedimentary Research, 72(1), 146–157.  https://doi.org/10.1306/060801720146.CrossRefGoogle Scholar
  49. Land, L. S. (1985). The origin of massive dolomite. Journal of Geological Education, 33(2), 112–125.CrossRefGoogle Scholar
  50. Land, L. S. (1992). The dolomite problem: stable and radiogenic isotope clues. In N. Clauer & S. Chaudhuri S (Eds.), Isotopic signatures and sedimentary records. Lecture Notes in Earth Sciences (Vol. 43). Berlin: Springer.CrossRefGoogle Scholar
  51. Land, L. S., & Hoops, G. K. (1973). Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic solutions. Journal of Sedimentary Research, 43(3), 614–617.Google Scholar
  52. Lohmann K.C. (1988) Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In N.P. James & P.W. Choquette (Eds.), Paleokarst. New York, NY: Springer.Google Scholar
  53. Machel, H. G. (1997). Recrystallization versus neomorphism, and the concept of ‘significant recrystallization’in dolomite research. Sedimentary Geology, 113(3–4), 161–168.CrossRefGoogle Scholar
  54. Machel, H. G. (2004). Concepts and models of dolomitization: a critical reappraisal. Geological Society, London, Special Publications, 235(1), 7–63.CrossRefGoogle Scholar
  55. Machel, H. G., & Anderson, J. H. (1989). Pervasive subsurface dolomitization of the Nisku Formation in central Alberta. Journal of Sedimentary Research, 59(6), 891–911.Google Scholar
  56. Makhloufi, Y., Rusillon, E., Brentini, M., Moscariello, A., Meyer, M., & Samankassou, E. (2018). Dolomitization of the Upper Jurassic carbonate rocks in the Geneva Basin, Switzerland and France. Swiss Journal of Geosciences, 111(3), 475–500.  https://doi.org/10.1007/s00015-018-0311-x.CrossRefGoogle Scholar
  57. Mattes, B. W., & Mountjoy, E. W. (1980). Burial dolomitization of the upper devonian miette buildup, Jasper National Park, Alberta. SEPM Special Publication, 28, 259–297.Google Scholar
  58. McArthur, J. M., Howarth, R. J., & Bailey, T. R. (2001). Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. The Journal of Geology, 109(2), 155–170.CrossRefGoogle Scholar
  59. Meister, P., Mckenzie, J. A., Bernasconi, S. M., & Brack, P. (2013). Dolomite formation in the shallow seas of the Alpine Triassic. Sedimentology, 60(1), 270–291.  https://doi.org/10.1111/sed.12001.CrossRefGoogle Scholar
  60. Meyer, M. (2000). Le Complexe récifal Kimméridgien—Tithonien du Jura méridional interne (France), évolution multifactorielle, stratigraphique et tectonique. Terre et Environment, 24, 1–179.Google Scholar
  61. Moore, C. H., Chowdhury, A., & Chan, L. (1988). Upper Jurassic smackover platform dolomitization northwestern Gulf of Mexico: a tale of two waters. Sedimentology and Geochemistry of Dolostones, 43, 753–778.Google Scholar
  62. Nader, F. H., & Swennen, R. (2004). The hydrocarbon potential of Lebanon: new insights from regional correlations and studies of Jurassic dolomitization. Journal of Petroleum Geology, 27(3), 253–275.CrossRefGoogle Scholar
  63. Nader, Fadi H., Swennen, R., Ellam, R. M., & Immenhauser, A. (2007). Field geometry, petrography and geochemistry of a dolomitization front (Late Jurassic, central Lebanon). Sedimentology, 54(5), 1093–1120.CrossRefGoogle Scholar
  64. Nader, Fadi H., Swennen, R., & Keppens, E. (2008). Calcitization/dedolomitization of Jurassic dolostones (Lebanon): results from petrographic and sequential geochemical analyses. Sedimentology, 55(5), 1467–1485.CrossRefGoogle Scholar
  65. Nicolaides, S., & Wallace, M. W. (1997). Submarine cementation and subaerial exposure in Oligo-Miocene temperate carbonates, Torquay Basin, Australia. Journal of Sedimentary Research, 67(3), 397–410.Google Scholar
  66. Nielsen, P., Swennen, R., & Keppens, E. (1994). Multiple-step recrystallization within massive ancient dolomite units: an example from the Dinantian of Belgium. Sedimentology, 41(3), 567–584.CrossRefGoogle Scholar
  67. Plunkett, J. M. (1997). Early diagenesis of shallow platform carbonates in the Oxfordian of the Swiss Jura Mountains (PhD Thesis). Fribourg: Université de Fribourg.Google Scholar
  68. Prestel, R. (1989). Isotopengehalt von Kluft-Calciten aus dem Malm-Kern der Bohrung Saulgau GB 3. Abh. Geol. Landesamt Baden-Württemberg, 13, 161–180.Google Scholar
  69. Prestel, R. (1990). Untersuchungen zur Diagenese von Malm-Karbonatgesteinen und Entwicklung des Malm-Grundwassers in suddeutschen Molassebecken (PhD Thesis). Stuttgart, Stuttgart.Google Scholar
  70. Rameil, N. (2005). Carbonate sedimentology, sequence stratigraphy, and cyclostratigraphy of the Tithonian in the Swiss and French Jura Mountains: a high-resolution record of changes in sea level and climate (PhD Thesis). Fribourg: Université de Fribourg, 246 pp.Google Scholar
  71. Rameil, N. (2008). Early diagenetic dolomitization and dedolomitization of Late Jurassic and earliest Cretaceous platform carbonates: a case study from the Jura Mountains (NW Switzerland, E France). Sedimentary Geology, 212(1–4), 70–85.CrossRefGoogle Scholar
  72. Reinhold, C. (1998). Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany. Sedimentary Geology, 121(1–2), 71–95.CrossRefGoogle Scholar
  73. Rosenbaum, J., & Sheppard, S. M. F. (1986). An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochimica et Cosmochimica Acta, 50(6), 1147–1150.CrossRefGoogle Scholar
  74. Schmoker, J. W., Krystinik, K. B., & Halley, R. B. (1985). Selected characteristics of limestone and dolomite reservoirs in the United States. AAPG Bulletin, 69(5), 733–741.Google Scholar
  75. Shackleton, N. J. (1975). Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277,279, and 281. Initial Reports of Deep Sea Drilling Project, 29, 743–756.Google Scholar
  76. Shearman, D. J., Khouri, J., & Taha, S. (1961). On the replacement of dolomite by calcite in some Mesozoic limestones from the French Jura. Proceedings of the Geologists’ Association, 72(1), 1–12.CrossRefGoogle Scholar
  77. Sibley, D. F., & Gregg, J. M. (1987). Classification of dolomite rock textures. Journal of Sedimentary Petrology, 57(6), 967–975.Google Scholar
  78. Smith, T. M., & Dorobek, S. L. (1993). Alteration of early-formed dolomite during shallow to deep burial: Mississippian Mission Canyon Formation, central to southwestern Montana. Geological Society of America Bulletin, 105(11), 1389–1399.CrossRefGoogle Scholar
  79. Sommaruga, A. (1997). Geology of the central Jura and the molasse basin: new insight into an evaporite-based foreland fold and thrust belt (PhD Thesis). Université de Neuchâtel.Google Scholar
  80. Staudt, W. J., Reeder, R. J., & Schoonen, M. A. A. (1994). Surface structural controls on compositional zoning of SO2−4 and SeO2−4 in synthetic calcite single crystals. Geochimica et Cosmochimica Acta, 58(9), 2087–2098.  https://doi.org/10.1016/0016-7037(94)90287-9.CrossRefGoogle Scholar
  81. Strasser, A. (1988). Shallowing-upward sequences in Purbeckian peritidal carbonates (lowermost Cretaceous, Swiss and French Jura Mountains). Sedimentology, 35(3), 369–383.CrossRefGoogle Scholar
  82. Strasser, A. (1994). Milankovitch cyclicity and high‐resolution sequence stratigraphy in lagoonal–peritidal carbonates (Upper Tithonian–Lower Berriasian, French Jura Mountains). In P.L. de Boer, & D.G. Smith (Eds.), Orbital forcing and cyclic sequences. Special Publication International Association of Sedimentologists, pp. 285–301.Google Scholar
  83. Suzuki, Y., Iryu, Y., Inagaki, S., Yamada, T., Aizawa, S., & Budd, D. A. (2006). Origin of atoll dolomites distinguished by geochemistry and crystal chemistry: Kita-daito-jima, northern Philippine Sea. Sedimentary Geology, 183(3), 181–202.  https://doi.org/10.1016/j.sedgeo.2005.09.016.CrossRefGoogle Scholar
  84. Vahrenkamp, V. C., & Swart, P. K. (1990). New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites. Geology, 18(5), 387–391.  https://doi.org/10.1130/0091-7613(1990)018%3c0387:NDCFTI%3e2.3.CO;2.CrossRefGoogle Scholar
  85. Videtich, P. E., & Matthews, R. K. (1980). Origin of discontinuity surfaces in limestones: isotopic and petrographic data, Pleistocene of Barbados, West Indies. Journal of Sedimentary Research, 50(3), 971–980.Google Scholar
  86. Warrak, M. (1974). The petrography and origin of dedolomitized, veined or brecciated carbonate rocks, the ‘cornieules’, in the Fréjus region, French Alps. Journal of the Geological Society, 130(3), 229–245.CrossRefGoogle Scholar
  87. Warren, J. (2000). Dolomite: occurrence, evolution and economically important associations. Earth-Science Reviews, 52(1–3), 1–81.CrossRefGoogle Scholar
  88. Wheeler, C. W., Aharon, P., & Ferrell, R. E. (1999). Successions of late Cenozoic platform dolomites distinguished by texture, geochemistry, and crystal chemistry; Niue, South Pacific. Journal of Sedimentary Research, 69(1), 239–255.  https://doi.org/10.2110/jsr.69.239.CrossRefGoogle Scholar
  89. Yamamoto, K., Ottinger, G., Al Zinati, O., Takayanagi, H., Yamamoto, K., & Iryu, Y. (2018). Geochemical, petrographical, and petrophysical evaluations of a heterogeneous, stratiform dolomite from a Barremian oil field, offshore Abu Dhabi (United Arab Emirates). AAPG Bulletin, 102(1), 129–152.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2019

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of GenevaGenevaSwitzerland

Personalised recommendations