Advertisement

A new species of Palaeopython (Serpentes) and other extinct squamates from the Eocene of Dielsdorf (Zurich, Switzerland)

  • Georgios L. GeorgalisEmail author
  • Torsten M. Scheyer
Article

Abstract

The lizard and snake fauna from the late middle–late Eocene (MP 16–MP 20) of Dielsdorf, near Zurich, Switzerland, is described comprehensively in this paper. Detailed comparisons of the Dielsdorf material with other extinct taxa allow us to establish a new species of the large “booid” genus Palaeopython, i.e., Palaeopython helveticus sp. nov., characterized by a unique combination of vertebral features, most prominently a highly vaulted neural arch. Other squamates of the Dielsdorf assemblage comprise the large lizard Palaeovaranus sp. and as many as three other taxa of snakes, i.e., Palaeopython cf. fischeri, Palaeopython sp. (morphotype 3), and “Booidea” indet. We conducted micro-CT scanning in the Palaeovaranus dentary, which confirmed the presence of plicidentine in this lizard genus. Micro-CT scanning was also conducted in differently sized snake vertebrae from our sample, revealing that the respective anatomical differences were probably due to ontogenetic variation. This is the first time that micro-CT scanning is applied in Palaeovaranus and Palaeopython. The importance of this method for potentially clarifying the taxonomy and precise affinities of extinct snakes is addressed. We also provide digital 3D model reconstructions of the Palaeovaranus dentary and Palaeopython vertebrae (including that of the holotype of Palaeopython helveticus sp. nov.) for the first time. The palaeobiogeographic significance of the Dielsdorf lizards and snakes is discussed and the sympatric occurrences of the genera Palaeovaranus and Palaeopython throughout the Eocene of Europe are presented in detail.

Keywords

Squamata Eocene Switzerland Palaeopython Palaeovaranus New genus and species 

Notes

Acknowledgements

We are deeply indebted to Marcelo Sánchez-Villagra (PIMUZ) for supporting this project and inviting GLG to study the Dielsdorf squamate material. We also thank Christian Klug (PIMUZ) for access to the Dielsdorf collection, as well as Alexandra Wegmann, Marcelo Sánchez-Villagra, and Thodoris Argyriou (PIMUZ) for CT scanning, and Heinz Furrer (formerly PIMUZ) for photographs of PIMUZ A/III 633. Access to comparative skeletal material of various extinct and extant squamates was made possible through grants SYNTHESYS ES-TAF-5910 (MNCN), SYNTHESYS AT-TAF-5911 (NHMW), SYNTHESYS HU-TAF-6145 (HNHM), and SYNTHESYS GB-TAF-6591 (NHMUK) to GLG, and the respective curators (Marta Calvo-Revuelta, Heinz Grillitsch, Judit Vörös, and Sandra Chapman) are highly thanked here. TMS acknowledges support by the Swiss National Science Foundation (Grant No. 205321_16277). For access and/or permissions to use photographs of material under their care, we thank Nour-Eddine Jalile (MNHN), Sandra Chapman (NHMUK), Krister Smith (SMF), Márton Rabi and Oliver Wings (GMH), Massimo Delfino (University of Torino), and Ursula Göhlich and Georg Gassner (NHMW). We are also grateful to Zbigniew Szyndlar (ZZSiD) for permission to use his drawings of specimens. This manuscript was benefited by various discussions with Krister Smith (SMF), Andrej Černanský and Jozef Klembara (PRIF UK), Alessandro Palci and Silvio Onary (Flinders University), and the late Jean-Claude Rage (MNHN). The life reconstruction in Fig. 18 was made by Jaime Chirinos. We finally thank the Editor Daniel Marty and the two reviewers, Krister Smith and an anonymous one, for their comments that enhanced the quality of the manuscript.

Supplementary material

15_2019_341_MOESM1_ESM.tif (7.5 mb)
Supplementary Fig. 1 Vertebral centra of specimens of Palaeopython helveticus sp. nov. in sagittal plane: PIMUZ A/III 631 (a), PIMUZ A/III 636 (b), and the holotype PIMUZ A/III 634 (c). White dotted lines in (c) represent the outlines of the vertebral centra in sagittal plane of (a) and (b). (TIFF 7643 kb)

References

  1. Albino, A. M. (1993). Snakes from the Paleocene and Eocene of Patagonia (Argentina): Paleoecology and coevolution with mammals. Historical Biology, 7, 51–69.CrossRefGoogle Scholar
  2. Auffenberg, W. (1958). A new genus of colubrid snake from the upper Miocene of North America. American Museum Novitates, 1874, 1–16.Google Scholar
  3. Auffenberg, W. (1963). The fossil snakes of Florida. Tulane Studies in Zoology, 10, 131–216.CrossRefGoogle Scholar
  4. Augé, M. (1990). La faune de lézards et d’Amphisbènes (Reptilia, Squamata) du gisement de Dormaal (Belgique, Eocène inférieur). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, 60, 161–173.Google Scholar
  5. Augé, M. (2005). Evolution des lézards du Paléogène en Europe. Mémoires du Muséum National d’Histoire Naturelle, Paris, 192, 1–369.Google Scholar
  6. Augé, M., & Smith, R. (2009). An assemblage of early Oligocene lizards (Squamata) from the locality of Boutersem (Belgium), with comments on the Eocene-Oligocene transition. Zoological Journal of the Linnean Society, 155, 148–170.CrossRefGoogle Scholar
  7. Barnes, B. (1927). Eine eozäne Wirbeltier-Fauna aus der Braunkohle des Geiseltals. Jahrbuch des Halleschen Verbandes für die Erforschung der mitteldeutschen Bodenschätze, Neue Folge, 6, 5–24.Google Scholar
  8. Bhullar, B.-A. S., & Smith, K. T. (2008). Helodermatid lizard for the Miocene of Florida, the evolution of the dentary in Helodermatidae, and comments on dentary morphology in Varanoidea. Journal of Herpetology, 42, 286–302.CrossRefGoogle Scholar
  9. Bochaton, C., & Bailon, S. (2018). A new fossil species of Boa Linnaeus, 1758 (Squamata, Boidae), from the Pleistocene of Marie-Galante Island (French West Indies). Journal of Vertebrate Paleontology, 38, e1462829.CrossRefGoogle Scholar
  10. Bogert, C. M. (1964). Snakes of the genera Diaphorolepis and Synophis and the colubrid subfamily Xenoderminae (Reptilia, Colubridae). Senckenbergiana Biologica, 45, 509–531.Google Scholar
  11. Bolliger, T. (1992). Kleinsäuger aus der miozänmolasse der Ostschweiz. Documenta Naturae, 75, 1–297.Google Scholar
  12. Brattstrom, B. H. (1955). New snakes and lizards from the Eocene of California. Journal of Paleontology, 29, 145–149.Google Scholar
  13. Crochet, J.-Y., Hartenberger, J.-L., Rage, J.-C., Rémy, J. A., Sigé, B., Sudre, J., et al. (1981). Les nouvelles faunes de vertébrés antérieures à la “Grande Coupure” découvertes dans les phosphorites du Quercy. Bulletin du Muséum National d’Histoire Naturelle, Series 4, 3, 245–266.Google Scholar
  14. D’Amore, D. C., Clulow, S., Doody, J. S., Rhind, D., & McHenry, C. R. (2018). Claw morphometrics in monitor lizards: Variable substrate and habitat use correlate to shape diversity within a predator guild. Ecology and Evolution, 8, 6766–6778.CrossRefGoogle Scholar
  15. Daudin, F. M. (1803). Histoire naturelle, génerale et particulière des reptiles; Ouvrage faisant suite aux Oeuvres de Leclerc de Buffon, et partie du cours complet d’histoire naturelle rédigé par C.S. Sonnini, membre de plusieurs sociétés savantes Tome cinquième (p. 365). Paris: F. Dufart.Google Scholar
  16. de Rochebrune, A. T. (1880). Revision des ophidiens fossiles du Museum d’Histoire Naturelle. Nouvelles Archives du Muséum d’Histoire Naturelle, 2ème Série, 3, 271–296.Google Scholar
  17. de Rochebrune, A. T. (1884). Faune ophiologique des Phosphorites du Quercy. Mémoires de la Société des Sciences Naturelles de Saône-et-Loire, 5, 149–164.Google Scholar
  18. De Stefano, G. (1903). I sauri del Quercy appartenenti alla collezione Rossignol. Atti della Societa Italiana di Scienze Naturali e del Museo Civili di Storia Naturale, Milan, 42, 382–418.Google Scholar
  19. De Stefano, G. (1905). Appunti sui Batraci e sui Rettili del Quercy appartenenti alla collezione Rossignol. Parte Terza. Coccodrilli–Serpenti–Tartarughe. Bolletino della Società Geologica Italiana, 24, 17–67.Google Scholar
  20. Delfino, M., Zoboli, D., Carnevale, G., & Pillola, G. L. (2014). The rediscovered holotype of Palaeopython sardus Portis, 1901 from the Miocene of Sardinia belongs to a fish, not to a snake. Bollettino della Società Paleontologica Italiana, 53, 89–92.Google Scholar
  21. Duffaud, S., & Rage, J.-C. (1997). Les remplissages karstiques polyphasés (Éocène, Oligocène, Pliocène) de Saint-Maximin (Phosphorites du Gard) et leur apport à la connaissance des faunes européennes, notamment pour l’Éocène moyen (MP 13). 2.– Systématique: Amphibiens et Reptiles. In J. P. Aguilar, S. Legendre & J. Michaux (Eds.), Actes du Congrès BiochroM’97. Mémoires et Travaux de l’Institut de Montpellier de l’Ecole Pratique des Hautes Études, 21, 729–735.Google Scholar
  22. Duméril, A. M. C., & Bibron, G. (1835). Erpétologie générale ou histoire naturelle complète des reptiles. Tome second. Contenant l’histoire de toutes les espèces de l’ordre des tortues ou chéloniens, et les généralités de celui des lézards ou sauriens (p. 680). Paris: Librairie Encyclopédique de Roret.Google Scholar
  23. Duméril, A. M. C., & Bibron, G. (1844). Erpétologie générale ou histoire naturelle complète des reptiles. Tome sixième, comprenant l’histoire générale des ophidiens, la description des genres et des espèces de serpents non venimeux, savoir, la totalité des vermiformes ou des scolecophides, et partie des circuriformes ou azémiophides; en tout vingt–cinq genres et soixante–cinq espèces (p. 609). Paris: Librairie Encyclopédique de Roret.Google Scholar
  24. Fejérváry de, G. J. (1935). Further contributions to a monograph of the Megalanidae and Fossil Varanidae, with notes on recent varanians. Annales historico-Naturales Musei nationalis Hungarici, Pars Zoologica, 29, 1–130.Google Scholar
  25. Figueroa, A., McKelvy, A. D., Grismer, L. L., Bell, C. D., & Lailvaux, S. P. (2016). A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. PLoS One, 11, e0161070.CrossRefGoogle Scholar
  26. Filhol, H. (1876). Sur les reptiles fossiles des phosphorites du Quercy. Bulletin de la Société Philomathique de Paris, Série 6, 11, 27–28.Google Scholar
  27. Filhol, H. (1877a). Recherches sur les Phosphorites du Quercy. Étude des fossiles qu’on y rencontre et spécialement des mammifères. Pt. II. Annales des Sciences Géologiques, 8, 1–340.Google Scholar
  28. Filhol, H. (1877b). Recherches sur les Phosphorites du Quercy. Étude des fossiles qu’on y rencontre et spécialement des mammifères. Pt. II. Bibliothèque de l’Ecole des Hautes Études, Section des Sciences Naturelles, 16, 1–338.Google Scholar
  29. Filhol, H. (1877c). Recherches sur les phosphorites du Quercy. Étude des fossiles qu’on y rencontre et spécialement des mammifères (p. 561). Paris: G. Masson.Google Scholar
  30. Frazzetta, T. H. (1975). Pattern and instability in the evolving premaxilla of boine snakes. American Zoologist, 15, 469–481.CrossRefGoogle Scholar
  31. Fürbringer, M. (1900). Zur vergleichenden anatomie des Brustschulterapparates und der Schultermuskeln. Jenaische Zeitschrift, 34, 215–718.Google Scholar
  32. Gans, C. (1952). The functional morphology of the egg-eating adaptations in the snake genus Dasypeltis. Zoologica: Scientific Contributions of the New York Zoological Society, 37, 209–244.Google Scholar
  33. Gans, C., & Oshima, M. (1952). Adaptations for egg eating in the snake Elaphe climacophora (Boie). American Museum Novitates, 1571, 1–16.Google Scholar
  34. Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., & Behike, A. D. B. (2012). Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53, 3–308.CrossRefGoogle Scholar
  35. Georgalis, G. L. (2017). Necrosaurus or Palaeovaranus? Appropriate nomenclature and taxonomic content of an enigmatic fossil lizard clade (Squamata). Annales de Paléontologie, 103, 293–303.CrossRefGoogle Scholar
  36. Georgalis, G. L., & Joyce, W. G. (2017). A review of the fossil record of Old World turtles of the clade Pan-Trionychidae. Bulletin of the Peabody Museum of Natural History, 58, 115–208.CrossRefGoogle Scholar
  37. Georgalis, G. L., & Scheyer T. M. (2019). 3D data related to the publication: A new species of Palaeopython (Serpentes) and other extinct squamates from the Eocene of Dielsdorf (Zurich, Switzerland). MorphoMuseuM, 5, e93. doi:  https://doi.org/10.18563/journal.m3.93 CrossRefGoogle Scholar
  38. Georgalis, G. L., Villa, A., & Delfino, M. (2017). The last European varanid: demise and extinction of monitor lizards (Squamata, Varanidae) from Europe. Journal of Vertebrate Paleontology, 37, e1301946.CrossRefGoogle Scholar
  39. Gilmore, C. W. (1938). Fossil snakes of North America. Geological Society of North America, Special Papers, 9, 1–96.CrossRefGoogle Scholar
  40. Gray, J. E. (1825). A synopsis of the genera of Reptiles and Amphibia, with a description of some new species. Annals of Philosophy, Series 2, 10, 193–217.Google Scholar
  41. Haas, G. (1960). On the trigeminus muscles of the lizards Xenosaurus grandis and Shinisaurus crocodilurus. American Museum Novitates, 2017, 1–54.Google Scholar
  42. Habersetzer, J., & Schaal, S. (1990). Röntgenmethoden zur Untersuchung fossiler unt rezenter Wirbeltiere. Natur und Museum, 120, 254–266.Google Scholar
  43. Harrington, S. M., & Reeder, T. W. (2017). Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction. Biological Journal of the Linnean Society, 121, 379–394.CrossRefGoogle Scholar
  44. Haubold, H. (1977). Zur Kenntnis der Sauria (Lacertilia) aus dem Eozän des Geiseltals. In H. W. Matthes, & B. Thaler (Eds.), Eozäne Wirbeltiere des Geiseltales (Wissenschaftliche Beiträge 1977/2). Martin-Luther-Universität Halle-Wittenberg, Wissenschaftliche Beiträge, 1977, 107–112.Google Scholar
  45. Hecht, M., & Hoffstetter, R. (1962). Note préliminaire sur les amphibiens et les squamates du Landénien supérieur et du Tongrien de Belgique. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, 38, 1–30.Google Scholar
  46. Hoffstetter, R. (1943). Varanidae et Necrosauridae fossiles. Bulletin du Muséum National d’Histoire Naturelle, Série 2, 15, 134–141.Google Scholar
  47. Hoffstetter, R. (1957). Un Saurien hélodermatidé (Eurheloderma gallicum nov. gen. et sp.) dans la faune fossile des phosphorites du Quercy. Bulletin de la Société Géologique de France Série, 6(7), 775–786.Google Scholar
  48. Hoffstetter, R. (1962). Additions à la faune reptilienne de l’Éocène supérieur de Mormont-Saint-Loup (Suisse). Bulletin de la Société Géologique de France, 4, 109–117.Google Scholar
  49. Hoffstetter, R., & Rage, J.-C. (1972). Les Erycinae fossiles de France (Serpentes, Boidae). Compréhension et histoire de la sous-famille. Annales de Paléontologie, 58, 81–124.Google Scholar
  50. Holman, J. A. (1996). A new genus of diminutive boid snake from the upper Eocene of Hordle Cliff, Hampshire, England. Tertiary Research, 17, 11–13.Google Scholar
  51. Holman, J. A. (2000). Fossil Snakes of North America: Origin, Evolution, Distribution, Paleoecology (p. 357). Bloomington and Indianapolis: Indiana University Press.Google Scholar
  52. Holman, J. A., Harrison, D. L., & Ward, D. J. (2006). Late Eocene snakes from the Headon Hill Formation, southern England. Cainozoic Research, 5, 51–62.Google Scholar
  53. Hsiang, A. Y., Field, D. J., Webster, T. H., Behlke, A. D. B., Davis, M. B., Racicot, R. A., et al. (2015). The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evolutionary Biology, 15, 87.CrossRefGoogle Scholar
  54. Hünermann, K. A. (1978). Ein varanoider Lacertilier (Reptilia, Squamata) aus einer alttertiären Spaltenfüllung von Dielsdorf (Kt. Zürich). Eclogae Geologicae Helvetiae, 71, 769–774.Google Scholar
  55. Hünermann, K. A. (1981). Die Glimmersandgrube am Rodenberg bei Schlattingen (Kt. Thurgau) als paläontologisches Studienobjekt in der Oberen Süsswassermolasse. Mitteilungen der Thurgauischen Naturforschenden Gesellschaft, 44, 7–32.Google Scholar
  56. [ICZN] International Commission on Zoological Nomenclature. 1999. International Code of Zoological Nomenclature. 4th edition (306 p.). London: International Trust for Zoological Nomenclature.Google Scholar
  57. Ivanov, M. (2000). Snakes of the lower/middle Miocene transition at Vieux Collonges (Rhône; France), with comments on the colonisation of western Europe by colubroids. Geodiversitas, 22, 559–588.Google Scholar
  58. Jost, J., Kälin, D., Börner, S., Vasilyan, D., Lawver, D., & Reichenbacher, B. (2015). Vertebrate microfossils from the Upper Freshwater Molasse in the Swiss Molasse Basin: Implications for the evolution of the North Alpine Foreland Basin during the Miocene Climate Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology, 426, 22–33.CrossRefGoogle Scholar
  59. Kearney, M., & Rieppel, O. (2006). An investigation into the occurrence of plicidentine in the teeth of squamate reptiles. Copeia, 2006, 337–350.CrossRefGoogle Scholar
  60. Klembara, J., & Green, B. (2010). Anguimorph lizards (Squamata, Anguimorpha) from the Middle and Upper Eocene of the Hampshire Basin of Southern England. Journal of Systematic Palaeontology, 8, 97–129.CrossRefGoogle Scholar
  61. Kuhl, H. (1820). Beiträge zur Zoologie und vergleichenden Anatomie (152 pp.). Frankfurt: Hermannsche Buchhandlung.Google Scholar
  62. Kuhn, O. (1939). Die Schlangen (Boidae) aus dem Mitteleozän des Geiseltales. Nova Acta Leopoldina, Neue Folge, 7, 119–133.Google Scholar
  63. Kuhn, O. (1940a). Crocodilier- und Squamatenreste aus dem oberen Paleocän von Walbeck. Zentralblatt für Mineralogie, Geologie und Paläontologie, Abteilung B, 1940, 21–25.Google Scholar
  64. Kuhn, O. (1940b). Die Placosauriden und Anguiden aus dem Mittleren Eozän des Geiseltales. Nova Acta Academia Leopoldina, Carolinska, 53, 461–486.Google Scholar
  65. Kuhn, O. (1963). Serpentes (Supplementum I). In F. Westphal (Ed.), Fossilium Catalogus, I: Animalia, pars 103 (45 pp.). Gravenhage: Uitgeverij Dr. W. Junk.Google Scholar
  66. LaDuke, T. C. (1991). The fossil snakes of Pit 91, Rancho la Brea, California. Contributions in Science, Natural History Museum of Los Angeles County, 424, 1–28.Google Scholar
  67. Laurent, Y., Adnet, S., Bourdon, E., Corbalan, D., Danilo, L., Duffaud, S., et al. (2010). La Borie (Saint-Papoul, Aude): un gisement exceptionnel dans l’Éocène basal du Sud de la France. Bulletin de la Société D’histoire Naturelle de Toulouse, 146, 89–103.Google Scholar
  68. Leidy, J. (1870). Descriptions of Emys jeanesi, E. haydeni, Baena arenosa, and Saniwa ensidens. Proceedings of the Academy of Natural Science, Philadelphia, 1870, 123–124Google Scholar
  69. Linnaeus, C. (1758). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis (824 p.). Stockholm: Laurentii Salvii.Google Scholar
  70. Lydekker, R. (1888). Catalogue of Fossil Reptiles and Amphibians in the British Museum (Natural History) Part I Containing the Orders Ornithosauria, Crocodilia, Dinosauria, Squamata, Rhynchocephalia, and Proterosauria (309 p.). London: British Museum (Natural History).Google Scholar
  71. Marsh, O. C. (1871). Description of some new Fossil Serpents, from the Tertiary deposits of Wyoming. The American Journal of Science and Arts, Series 3, 1, 322–327.Google Scholar
  72. Mennecart, B., Yerly, B., Mojon, P.-O., Angelone, C., Maridet, O., Böhme, M., et al. (2016). A new Late Agenian (MN2a, Early Miocene) fossil assemblage from Wallenried (Molasse Basin, Canton Fribourg, Switzerland). Paläontologische Zeitschrift, 90, 101–123.CrossRefGoogle Scholar
  73. Merrem, B. (1820). Versuch eines Systems der Amphibien I (Tentamen Systematis Amphibiorum) (p. 191). Marburg: J. C. Kriegeri.Google Scholar
  74. Müller, J. (1831). Beiträge zur Anatomie und Naturgeschichte der Amphibien. Zeitschrift für Physiologie, 4, 190–275.Google Scholar
  75. Nel, A., de Plöeg, G., Dejax, J., Dutheil, D., de Franceschi, D., Gheerbrant, E., et al. (1999). Un gisement sparnacien exceptionnel à plantes, arthropodes et vertébrés (Éocène basal, MP7): Le Quesnoy (Oise, France). Comptes Rendus de l’Académie des Sciences. Série II Fascicule A (Sciences de la Terre et des planètes), 329, 65–72.Google Scholar
  76. Nopcsa, F. (1923). Eidolosaurus und Pachyophis. Zwei neue Neocom-Reptilien. Palaeontographica, 65, 99–154.Google Scholar
  77. Oppel, M. (1811). Die Ordnungen, Familien und Gattungen der Reptilien als Prodrom einer Naturgeschichte derselben (p. 87). Munich: Joseph Lindauer, Munich.CrossRefGoogle Scholar
  78. Owen, R. (1850). Part III. Ophidia (Palaeophis & c.). In R. Owen (Ed.), Monograph on the fossil Reptilia of the London Clay and of the Bracklesham and other Tertiary beds (pp. 51–63). London: Palaeontographical Society of London.Google Scholar
  79. Palacký, J. (1884). Die Verbreitung der fossilen Schlangen in Europa. Sitzungsberichte der Königlich Böhmischen Gesellschaft der Wissenschaften in Prag, 1884, 165–166.Google Scholar
  80. Parmley, D., & Reed, H. W. (2003). Size and age class estimates of North American Eocene palaeopheid snakes. Georgia Journal of Science, 61, 220–232.Google Scholar
  81. Petermann, H., & Gauthier, J. A. (2018). Fingerprinting snakes: paleontological and paleoecological implications of zygantral growth rings in Serpentes. PeerJ, 6, e4819.CrossRefGoogle Scholar
  82. Pianka, R. E., King, D., & King, R. A. (2004). Varanoid Lizards of the World (p. 587). Bloomington: Indiana University Press.Google Scholar
  83. Pictet, F. J., Gaudin, C. T., & de La Harpe, P. (1855–1857). Mémoire sur les Animaux vertébrés trouvés dans le terrain Sidérolithique du Canton de Vaud et appartenant à la faune Eocène. Matériaux pour la Paléontologie Suisse, 1, 1–120.Google Scholar
  84. Popov, S. V., Rögl, F., Rozanov, A. Y., Steininger, F. F., Shcherba, I. G., & Kovac, M. (2004). Lithologic-Paleogeographic maps of Paratethys. Courier Forschungsinstitut Senckenberg, 250, 1–46.Google Scholar
  85. Portis, A. (1901). Il Palaeopython sardus Port. Nuovo pitonide del miocene medio della Sardegna. Bollettino della Società Geologica Italiana, 20, 247–253.Google Scholar
  86. Pyron, R. A., Burbrink, F. T., & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13, 93.CrossRefGoogle Scholar
  87. Rage, J.-C. (1974). Les Serpents des Phosphorites du Quercy. Palaeovertebrata, 6, 274–303.Google Scholar
  88. Rage, J.-C. (1976). Les squamates du Miocène de Béni Mellal, Maroc. Géologie Méditerranéene, 2, 57–70.CrossRefGoogle Scholar
  89. Rage, J.-C. (1978). 5. Squamates. In: B. Geze, J.-C. Rage, F. Vergnaud-Grazzini, F. de Broin, E. Buffetaut, C. Mourier-Chauvire, J.-Y. Crochet, B. Sigé, J. Sudre, A. Remy, L. Langebadre, L. de Bonis, J. L. Hartenberger, & M. Vianey-Liaud (Eds.), La poche à Phosphate de Ste-Néboule (Lot) et sa faune de vertébrés du Ludien supérior. Palaeovertebrata, 8, 201–215.Google Scholar
  90. Rage, J.-C. (1983). Les serpents aquatiques de l’Éocène européen. Définition des espèces et aspects stratigraphiques. Bulletin du Muséum National d’Histoire Naturelle, Section C, Sciences de la Terre, Paléontologie, Géologie, Minéralogie, 4(5), 213–241.Google Scholar
  91. Rage, J.-C. (1984). Serpentes. In P. Wellnhofer (Ed.), Encyclopedia of paleoherpetology, part 11 (p. 80). Stuttgart: G. Fischer.Google Scholar
  92. Rage, J.-C. (1988). Le gisement du Bretou (Phosphorites du Quercy, Tarn-et-Garonne, France) et sa faune de vertébrés de l’Eocène supérieur. I Amphibiens et Reptiles. Palaeontographica Abteilung A, 205, 3–27.Google Scholar
  93. Rage, J.-C. (2001). Fossil snakes from the Paleocene of São José de Itaboraí, Brazil. Part II. Boidae. Palaeovertebrata, 30, 111–150.Google Scholar
  94. Rage, J.-C. (2013). Mesozoic and Cenozoic squamates of Europe. Palaeobiodiversity and Palaeoenvironments, 93, 517–534.CrossRefGoogle Scholar
  95. Rage, J.-C., & Augé, M. (2010). Squamate reptiles from the middle Eocene of Lissieu (France). A landmark in the middle Eocene of Europe. Geobios, 43, 253–268.CrossRefGoogle Scholar
  96. Rage, J.-C., & Augé, M. (2015). Valbro: A new site of vertebrates from the early Oligocene (MP 22) of France (Quercy). III—Amphibians and squamates. Annales de Paleontologie, 101, 29–41.CrossRefGoogle Scholar
  97. Rage, J.-C., Bajpai, S., Thewissen, J. G. M., & Tiwari, B. N. (2003). Early Eocene snakes from Kutch, Western India, with a review of the Palaeophiidae. Geodiversitas, 25, 695–716.Google Scholar
  98. Rage, J.-C., & Ford, R. L. E. (1980). Amphibians and squamates from the Upper Eocene of the Isle of Wight. Tertiary Research, 3, 47–60.Google Scholar
  99. Reynolds, R. G., Niemiller, M. L., & Revell, L. J. (2014). Toward a Tree-of-Life for the boas and pythons: Multilocus species-level phylogeny with unprecedented taxon sampling. Molecular Phylogenetics and Evolution, 71, 201–213.CrossRefGoogle Scholar
  100. Romer, A. S. (1956). Osteology of the reptiles (p. 772). Chicago: University Chicago Press.Google Scholar
  101. Rosselet, C. (1991). Fie fauna der Spaltenfullungen von Dielsdorf (Eozan, Kanton Zurich). Documenta Naturae, 64, 1–177.Google Scholar
  102. Rosselet, C. (1993). The Fauna from the Fissure Fillings of Dielsdorf (Eocene, Canton Zurich, Switzerland). A Short Review. Kaupia, Darmstadter Beitrage zur Naturgeschichte, 3, 151–155.Google Scholar
  103. Russell, D. E., Bonde, N., Boné, E., de Broin, F., Brunet, M., Buffetaut, E., et al. (1982). Tetrapods of the Northwest European Tertiary Basin. International Geological Correlation Programme Project l24: the Northwest European Tertiary Basin. Geologisches Jahrbuch, A, 60, 5–74.Google Scholar
  104. Schaal, S. (2004). Palaeopython fischeri n. sp. (Serpentes: Boidae), eine Riesenschlange aus dem Eozän (MP 11) von Messel. Courier Forschungsinstitut Senckenberg, 252, 35–45.Google Scholar
  105. Schneider, J. G. (1801). Historiae amphibiorum naturalis et literariae. Fasciculus secundus, continens Crocodilos, Scincos, Chamaesauras, Boas, Pseudoboas, Elapes, Angues, Amphisbaenas et Caecilias (p. 364). Jenae: Friederici Frommann.Google Scholar
  106. Shaw, G. (1802). General zoology, or systematic natural history. Vol. III. Part II. Amphibia (pp. 313–615). London: G. Kearsley.Google Scholar
  107. Slowinski, J. B., & Lawson, R. (2002). Snake phylogeny: evidence from nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution, 23, 194–202.CrossRefGoogle Scholar
  108. Smith, K. T. (2009). Eocene Lizards of the Clade Geiseltaliellus from Messel and Geiseltal, Germany, and the Early Radiation of Iguanidae (Reptilia: Squamata). Bulletin of the Peabody Museum of Natural History, 50, 219–306.CrossRefGoogle Scholar
  109. Smith, K. T., Čerňanský, A., Scanferla, A., & Schaal, S. F. K. (2018). Lizards and Snakes–Warmth-loving Sunbathers. In K. T. Smith, S. F. K. Schaal, & J. Habersetzer (Eds.), Messel: an ancient greenhouse ecosystem (pp. 123–147). Stuttgart: Schweizerbart.Google Scholar
  110. Smith, K. T., & Gauthier, J. A. (2013). Early Eocene lizards of the Wasatch Formation near Bitter Creek, Wyoming: diversity and paleoenvironment during an interval of global warming. Bulletin of the Peabody Museum of Natural History, 54, 135–230.CrossRefGoogle Scholar
  111. Smith, K. T., & Scanferla, A. (2016). Fossil snake preserving three trophic levels and evidence for an ontogenetic dietary shift. Palaeobiodiversity and Palaeoenvironments, 96, 589–599.CrossRefGoogle Scholar
  112. Stromer, E. F. (1912). Lehrbuch der paläozoologie. II. Teil: wirbeltiere (p. 325). Leipzig and Berlin: B. G. Teubner.Google Scholar
  113. Szyndlar, Z. (1984). Fossil snakes from Poland. Acta Zoologica Cracoviensia, 28, 1–156.Google Scholar
  114. Szyndlar, Z., & Hoşgör, I. (2012). Boine snake Bavarioboa from the Oligocene/Miocene of eastern Turkey with comments on connections between European and Asiatic snake faunas. Acta Palaeontologica Polonica, 57, 667–671.CrossRefGoogle Scholar
  115. Szyndlar, Z., & Rage, J.-C. (2003). Non-erycine Booidea from the Oligocene and Miocene of Europe (p. 111). Kraków: Institute of Systematics and Evolution of Animals, Polish Academy of Sciences.Google Scholar
  116. Szyndlar, Z., & Schleich, H. H. (1993). Description of Miocene snakes from Petersbuch 2 with comments on the lower and middle Miocene ophidian faunas of southern Germany. Stuttgarter Beiträge zur Naturkunde B, 192, 1–47.Google Scholar
  117. Troschel, F. H. (1861). Über den Unterkiefer der Schlangen und über die fossile Schlange von Rott. Archiv für Naturgeschichte, 27, 326–360.Google Scholar
  118. Venczel, M., Vasile, Ş., & Csici-Sava, Z. (2015). A Late Cretaceous madtsoiid snake from Romania associated with a megaloolithid egg nest—Paleoecological inferences. Cretaceous Research, 55, 152–163.CrossRefGoogle Scholar
  119. Vidal, N., & Hedges, B. S. (2009). The molecular evolutionary tree of lizards, snakes, and amphisbaenians. Comptes Rendus Biologies, 332, 129–139.CrossRefGoogle Scholar
  120. Wallach, V., Williams, K. L., & Boundy, J. (2014). Snakes of the world: a catalogue of living and extinct species (p. 1237). Boca Raton, London and New York: CRC Press.CrossRefGoogle Scholar
  121. Weigelt, J. (1929). Loricotherium Waltheri ist doch kein Gürteltier, sondern eine Gürtlelechse: Placosaurus Waltheri n. sp. Jahrbuch des Halleschen Verbandes für die Erforschung der Mitteldeutschen Bodenschätze, 8, 187–191.Google Scholar
  122. Zittel, K. A. (1887–1890). Handbuch der Paläontologie. Palaeozoologie. III. Pisces, Amphibia, Reptilia, Aves (900 p.). Munchen and Leipsig: Druck und Verlag von R. Oldenbourg.Google Scholar

Copyright information

© Swiss Geological Society 2019

Authors and Affiliations

  1. 1.Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia
  2. 2.Department of GeosciencesUniversity of FribourgFribourgSwitzerland
  3. 3.Department of Earth SciencesUniversity of TorinoTurinItaly
  4. 4.University of Zurich, Palaeontological Institute and MuseumZurichSwitzerland

Personalised recommendations