Advertisement

Miocene syn-rift lacustrine sediments in the Mecsek Mts. (SW Hungary)

  • Krisztina Sebe
  • Ildikó Selmeczi
  • Andrea Szuromi-Korecz
  • Lilla Hably
  • Ádám Kovács
  • Zsolt Benkó
Article
  • 33 Downloads

Abstract

The Pannonian Basin, a major back-arc basin in the Alpine–Carpathian orogenic belt, experienced its syn-rift phase during the Early–Middle Miocene. Studying coeval sediments can provide important information on the initiation of the extension. This paper investigates syn-rift deposits in the Mecsek Mts. in SW Hungary from a tectono-sedimentary aspect, using stratigraphy, palaeontology and structural observations to constrain palaeoenvironments and their tectonic background. Our study shows that in the Mecsek area the widespread Early Miocene fluvial sedimentation was not directly followed by inundation by the Central Paratethys sea, instead, a phase of lacustrine deposition in the Karpatian–Early Badenian (late Burdigalian–early Langhian) preceded the marine flooding. The lake sediments have a low-diversity but abundant, endemic mollusc and ostracod fauna, dominated by the bivalve Congeria boeckhi and the gastropod Ferebithynia vadászi. Identical faunas at various sites indicate that “Lake Mecsek” was a single water body, covering the present-day Mecsek Mts. and their surroundings. Wedge-shaped clastic bodies along faults, fault scarp breccias and semi-soft sediment deformations suggest that extensional tectonic activity related to the rifting of the Pannonian Basin played a role in lake basin formation. The accumulation of lakes was probably also enhanced by increased precipitation during the Miocene Climatic Optimum. The Central Paratethys flooded the area in the Badenian (Langhian) and deposited normal marine sediments over the lacustrine ones. Considering the fauna, the sedimentary succession, the structural background and evolution history, the Mecsek area seems to be part of the Illyrian bioprovince and related to the Dinaride Lake System.

Keywords

Pannonian basin Syn-rift Lake Palaeoenvironment Mecsek Paratethys 

Notes

Acknowledgements

Research was supported by PURAM, by the OTKA/NKFIH project K108664, by the University of Pécs Excellence Centre program (20765-3/2018/FEKUTSTRAT), and the Bolyai János Research Scholarship of the Hungarian Academy of Sciences to Zsolt Benkó. We are grateful for the Kőka Ltd. for supporting work in the granite quarry in Geresdlak, and for Zoltán Lantos (Mining and Geological Survey of Hungary) for help with photography. The article strongly benefited from the comments and remarks of Karin Sant (Utrecht University, the Netherlands) and an anonymous reviewer.

References

  1. Andreánszky, G. (1955). Neue Pfanzenarten aus der unterhelvetischen Stufe von Magyaregregy). In: Andreánszky, G., Kovács, É. (Eds.), Gliederung und ökologie der jüngeren Tertiärfloren Ungarns. (Vol. 44, no. 1, pp. 152–153). Annals of the Hungarian Geological Institute, BudapestGoogle Scholar
  2. Andrić, N., Sant, K., Matenco, L., Mandic, O., Tomljenović, B., Pavelić, D., et al. (2017). The link between tectonics and sedimentation in asymmetric extensional basins: Inferences from the study of the Sarajevo-Zenica Basin. Marine and Petroleum Geology, 83, 305–332.CrossRefGoogle Scholar
  3. Balázs, A., Burov, E., Matenco, L., Vogt, K., Francois, T., & Cloetingh, S. (2017). Symmetry during the syn-and post-rift evolution of extensional back-arc basins: The role of inherited orogenic structures. Earth and Planetary Science Letters, 462, 86–98.CrossRefGoogle Scholar
  4. Balázs, A., Matenco, L., Magyar, I., Horváth, F., & Cloetingh, S. (2016). The link between tectonics and sedimentation in back-arc basins: new genetic constraints from the analysis of the Pannonian Basin. Tectonics, 35, 1526–1559.CrossRefGoogle Scholar
  5. Báldi, K., Benkovics, L., & Sztanó, O. (2002). Badenian (Middle Miocene) basin development in SW Hungary: subsidence history based on quantitative paleobathymetry of foraminifera. International Journal of Earth Sciences (Geologische Rundschau), 91, 490–504.CrossRefGoogle Scholar
  6. Balogh, K. (1985). K/Ar dating of Neogene volcanic activity in Hungary: Experimental technique, experiences and methods of chronologic studies. ATOMKI Rep, D/1, 277–288.Google Scholar
  7. Barabás, A. (2010). A délkelet-dunántúli hidrogenetikus uránérctelepek földtani környezete és összehasonlító értékelésük (Geological Environment of the ISL Uranium Ore Deposits of Southeastern Transdanubia and Their Comparative Study). Ph.D. Thesis, University of Pécs.Google Scholar
  8. Benkovics, L. (1997). Étude structurale et géodynamique des monts Buda, Mecsek et Villány (Hongrie). Ph.D. Thesis, Université des Sciences et Technologies de Lille.Google Scholar
  9. Böhme, M. (2003). The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 389–401.CrossRefGoogle Scholar
  10. Böhme, M., Winklhofer, M., & Ilg, A. (2011). Miocene precipitation in Europe: Temporal trends and spatial gradients. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 212–218.CrossRefGoogle Scholar
  11. Brestenska, E., & Jiricek, R. (1978). Ostracoden des Badenien der Zentralen Paratethys. In E. Brestenska (Ed.), Chronostratographie und Neostratotypen, Miozän der Zentralen Paratethys (pp. 405–439). Bratislava: M4 Veda, Verlag der Slowakischen Akademie der Wissenschaften.Google Scholar
  12. Budai, T., Csillag, G., Kercsmár, Z., Selmeczi, I., & Sztanó, O. (2015). Surface geology of Hungary. In Z. Kercsmár (Ed.), Explanatory notes to the Geological map of Hungary (1:500,000). Budapest: Geological and Geophysical Institute of Hungary.Google Scholar
  13. Chikán, G. (1991). A Nyugati-Mecsek kainozóos képződményei (Die Känozoischen Ablagerungen des westlichen Mecsekgebirges). Budapest: Annals of the Hungarian Geological Institute LXXII.Google Scholar
  14. Cicha, I., Krhovsky, J., Brzobohaty, R., Ctyroka, J., von Daniels, C. H., Haunold, T., et al. (1986). Oligocene and Miocene Uvigerina from the western and central Paratethys. Utrecht Micropaleontology Bulletins, 35, 121–181. (Utrecht).Google Scholar
  15. Ćorić, S., Pavelić, D., Rögl, F., Mandic, O., Vrabac, S., Avanić, R., et al. (2009). Revised Middle Miocene datum for initial marine flooding of North Croatian Basins (Pannonian Basin System, Central Paratethys). Geologia Croatica, 62, 31–43.CrossRefGoogle Scholar
  16. Csontos, L., Benkovics, L., Bergerat, F., Mansy, J.-L., & Wórum, G. (2002). Tertiary deformation history from seismic section study and fault analysis in a former European Tethyan margin (the Mecsek-Villány area, SW Hungary). Tectonophysics, 357, 81–102.CrossRefGoogle Scholar
  17. Erdei, B., Hably, L., Kázmér, M., Utescher, T., & Bruch, A. (2007). Neogene flora and vegetation development of the Pannonian domain in relation to palaeoclimate and palaeogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 131–156.CrossRefGoogle Scholar
  18. Gasparik, M. (2001). Neogene proboscidean remains from Hungary; an overview. Fragmenta Palaeontologica Hungarica, 19, 61–77.Google Scholar
  19. Gross, M. (2002). Mittelmiozäne Ostracoden aus dem Wiener Becken (Badenium/Sarmatium, Österreich). Naturwissenschaftliche Fakultät Karl-Franzens-Universitat Graz, 2002, 1–142.Google Scholar
  20. Gyalog, L. (Ed.) (1996). A földtani térképek jelkulcsa és a rétegtani egységek rövid leírása (Legend of the geological maps and a brief description of lithostratigraphic units). Occasional Papers of the Geological Institute of Hungary 187, 171 (Budapest).Google Scholar
  21. Gyalog, L. & Budai, T. (Eds.) (2004). Javaslatok Magyarország földtani képződményeinek litosztratigráfiai tagolására (Suggestions for the lithostratigraphic classification of geological formations of Hungary). Annual Report of the Geological Institute of Hungary on 2002 (pp. 195–232). Budapest.Google Scholar
  22. Haas, J. (Ed.). (2012). Geology of hungary (p. 244). Heidelberg: Springer.Google Scholar
  23. Hably, L. (2001). Fruits and leaves of Ailanthus Desf. from the Tertiary of Hungary. Acta Palaeobotanica, 41(2), 207–219.Google Scholar
  24. Hably, L., Thiébaut, M. (2002). Revision of Cedrelospermum (Ulmaceae) fruits and leaves from the Tertiary of Hungary and France.  Palaeontographica Abteilung B-Stuttgart, 262(1–4), 71–90.Google Scholar
  25. Hajek-Tadesse, V., Belak, M., Sremac, J., Vrsaljko, D., & Vacha, L. (2009). Early Miocene ostracods from the Sadovi section (Mt Pozeska gora, Croatia). Geologica Carpathica, 60(3), 251–262.CrossRefGoogle Scholar
  26. Halmai, J., Jámbor, Á., Ravasz-Baranyai, L., Vető, I. (Eds.) (1982). Geological results of the borehole Tengelic-2. (Tengelic 2. számú földtani fúrás eredményei). Annals of the Hungarian Geological Institute, 65, 325.Google Scholar
  27. Hámor, G. (1970). Das Miozän des östlichen Mecsek-Gebirges (Miocene of the Eastern Mecsek Mts.). Annals of the Hungarian Geological Institute, 53(1), 371.Google Scholar
  28. Hámor, G., Ravasz-Baranyai, L., Balogh, K., Árva-Sós, E. (1979). K/Ar dating of Miocene pyroclastic rocks in Hungary. Ann. Géol. Pays. Hellén. Tome hors série fasc. II., pp. 491–500.Google Scholar
  29. Harzhauser, M., & Mandic, O. (2008). Neogene lake systems of Central and South-Eastern Europe: Faunal diversity, gradients and interrelations. Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 417–434.CrossRefGoogle Scholar
  30. Harzhauser, M., & Mandic, O. (2010). Neogene dreissenids in Central Europe: evolutionary shifts and diversity changes. In G. van der Velde, S. Rajagopal, & A. bij de Vaate (Eds.), The zebra mussel in Europe (pp. 11–28). Weikersheim: Margraf Publishers.Google Scholar
  31. Hohenegger, J., Coric, S., & Wagreich, M. (2014). Timing of the middle Miocene Badenian stage of the central Paratethys. Geologica Carpathica, 65, 55–66.CrossRefGoogle Scholar
  32. Horváth, F. (2007). A Pannon-medence geodinamikája (Geodynamics of the Pannonian Basin). DSc dissertation, Budapest.Google Scholar
  33. Horváth, F., Bada, G., Szafián, P., Tari, G., Ádám, A., Cloething, S. (2006). Formation and deformation of the Pannonian basin: Constraints from observational data. In: Gee, D.G., Stephenson, R.A. (Eds.) (1999), European lithosphere dynamics (Vol. 32, pp. 191–206). Geological Society, London, Memoirs.Google Scholar
  34. Horváth, F., Musitz, B., Balázs, A., Végh, A., Uhrin, A., Nádor, A., et al. (2015). Evolution of the Pannonian basin and its geothermal resources. Geothermics, 53, 328–352.CrossRefGoogle Scholar
  35. Horváth, F., Tari, G. (1999). IBS Pannonian Basin project: a review of the main results and their bearings on hydrocarbon exploration. In: Durand, B., Jolivet, L., Horváth, F., Séranne, M., (Eds.), The Mediterranean basins: Tertiary extension within the Alpine orogen 1999 (Vol. 156, pp. 195–213). Geological Society London, Special Publications.Google Scholar
  36. Kochansky-Devidé, V., & Sliškovic, T. (1978). Miocenske kongerije Hrvatske, Bosne i Hercegovine. Paleontologia Jugoslavica, 19, 1–98.Google Scholar
  37. Kókay, J. (2006). Nonmarine mollusc fauna from the Lower and Middle Miocene, Bakony Mts. W Hungary. Geologica Hungarica Series Palaeontologica, 56, 196.Google Scholar
  38. Kókay, J., Hámor, T., Lantos, M., & Müller, P. (1991). A Berhida 3. sz. fúrás paleomágneses és földtani vizsgálata (The palaeomagnetic and geological study of borehole section Berhida 3). Annual Report of the Geological Institute of Hungary, 1989, 45–63.Google Scholar
  39. Kordos, L. (1985). A magyarországi eggenburgi–szarmata képződmények szárazföldi gerinces maradványai, biozonációja és rétegtani korrelációja (Terrestrial vertebrate remains from the Eggenburgian to Sarmatian of Hungary: Biozonation and stratigraphic correlation). Annual Report of the Geological Institute of Hungary, 1983, 157–166.Google Scholar
  40. Kovačić, M., Mandic, O., Tomljenović, B. (2016). Miocene paleo-lakes of the southwestern Pannonian Basin. In: Mandic, O., Pavelić, D., Kovačić, M., Sant, K., Andrić, N., Hrvatović, H. (Eds.), Field Trip Guide-book. LakeBasinEvolution, RCMNS Interim Colloquium 2016 & Croatian Geological Society Limnogeology Workshop (pp. 11–31), 19–24 May 2016, Zagreb, Croatia. Croatian Geological Society.Google Scholar
  41. Krstić, N., Jovanović, G., Savić, Lj, & Bodor, E. (2003). Lower Miocene lakes of the Balkan Land. Acta Geologica Hungarica, 46(3), 291–299.CrossRefGoogle Scholar
  42. Krstić, N., Savić, Lj, & Jovanović, G. (2012). The Neogene Lakes on the Balkan Land. Annales Geologiques de la Peninsule Balkanique, 73, 37–60.CrossRefGoogle Scholar
  43. Lemberkovics, V., Kissné, Pável E., Badics, B., Lőrincz, K., Rodionov, A., & Galimullin, I. (2018). Petroleum system of Miocene troughs of the Pannonian Basin in southern Hungary, based on 3D basin modeling. Interpretation, 6(1), SB37–SB50.CrossRefGoogle Scholar
  44. Mandic, O., de Leeuw, A., Bulić, J., Kuiper, K. F., Krijgsman, W., & Jurišić-Polšak, Z. (2012). Paleogeographic evolution of the Southern Pannonian Basin: 40Ar/39Ar age constraints on the Miocene continental series of Northern Croatia. International Journal of Earth Sciences, 101, 1033–1046.CrossRefGoogle Scholar
  45. Mandic, O., de Leeuw, A., Vuković, B., Krijgsman, W., Harzhauser, M., & Kuiper, K. F. (2011). Palaeoenvironmental evolution of Lake Gacko (Southern Bosnia and Herzegovina): Impact of the Middle Miocene climatic optimum on the Dinaride lake system. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 475–492.CrossRefGoogle Scholar
  46. Mandic, O., Hajek-Tadesse, V., Bakrač, K., Reichenbacher, B., Grizelj, A., & Miknić, M. (2017). A Long-lived brackish water lake in the Central Paratethys backyard. In M. Kovačić, L. Wacha, & M. Horvat (Eds.), 7th International Workshop on the Neogene of Central and South-Eastern Europe, Field trip guidebook (pp. 15–18). Zagreb: Croatian Geological Society.Google Scholar
  47. Matenco, L., & Radivojević, D. (2012). On the formation and evolution of the Pannonian Basin: Constraints derived from the structure of the junction area between the Carpathians and Dinarides. Tectonics, 31, TC6007.  https://doi.org/10.1029/2012tc003206.CrossRefGoogle Scholar
  48. Meisch, C. (1998). Freshwater Ostracoda of Western and Central Europe. Heidelberg: Spektrum Akademischer Verlag.Google Scholar
  49. Nagymarosy, A., & Hámor, G. (2012). Genesis and evolution of the Pannonian Basin. In J. Haas (Ed.), Geology of Hungary (pp. 149–200). New York: Springer.Google Scholar
  50. Neubauer, T. A., Harzhauser, M., Kroh, A., Georgopoulou, E., & Mandic, O. (2015). A gastropod-based biogeographic scheme for the European Neogene freshwater systems. Earth-Science Reviews, 143, 98–116.CrossRefGoogle Scholar
  51. Nier, A. O. (1950). A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Physical Review Letters, 77, 789–793.Google Scholar
  52. Pálfalvy, I. (1953). Középső-miocén növények Magyaregregy környékéről. (Plantes Miocènes moyennes des environs de Magyaregregy). Annual Report of the Geological Institute of Hungary on 1950, 175–180.Google Scholar
  53. Pálfalvy, I. (1961). Új növények a mecseki középső-miocén rétegekből. (Neue Pflanzenarten aus den mecseker mittleren miozänen Schichten). Annual Report of the Geological Institute of Hungary on 1957–1958, 401–415.Google Scholar
  54. Pavelić, D., & Kovačić, M. (2018). Sedimentology and stratigraphy of the Neogene rift-type North Croatian Basin (Pannonian Basin System, Croatia): A review. Marine and Petroleum Geology, 91, 455–469.CrossRefGoogle Scholar
  55. Piller, W. E., Harzhauser, M., & Mandic, O. (2007). Miocene Central Paratethys stratigraphy—current status and future directions. Stratigraphy, 4, 151–168.Google Scholar
  56. Radivojević, D., & Rundić, L. (2016). Synrift and postrift Miocene sediments of northern Banat, Serbia. Underground Mining Engineering, 28, 39–60.Google Scholar
  57. Sant, K., Mandic, O., Rundic, L., Kuiper, K. F., & Krijgsman, W. (2017). Age and evolution of the Serbian Lake System: Integrated results from Middle Miocene Lake Popovac. Newsletters on Stratigraphy, 51(1), 117–143.CrossRefGoogle Scholar
  58. Sebe K., Csillag G., Dulai A., Gasparik M., Magyar I., Selmeczi I., Szabó M., Sztanó O., Szuromi-Korecz A. (2015). Neogene stratigraphy in the Mecsek region. In: Bartha I-R., Kriván Á., Magyar I., Sebe K. (Eds.), Neogene of the Paratethyan Region. 6th Workshop on the Neogene of Central and South-Eastern Europe. An RCMNS Interim Colloquium. Programme, Abstracts, Field Trip Guidebook. 2015.05.31-06.03, Orfű (pp. 102–124). Hungarian Geological Society, Budapest.Google Scholar
  59. Staub, M. (1882). Baranyamegyei mediterrán növények (Mediterranean Plants from Baranya county). Annals of the Hungarian Royal Geological Institute, 6, 23–42.Google Scholar
  60. Steiger, R. H., & Jäger, E. (1977). Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3), 359–362.CrossRefGoogle Scholar
  61. Tari, G. (1992). Late Neogene transpression in the Northern Thrust zone Mecsek Mts., Hungary. Annales of the Eötvös University Budapest Sect. Geol., 29, 165–187.Google Scholar
  62. Tari, G., Horváth, F., & Rumpler, I. (1992). Styles of extension in the Pannonian Basin. Tectonophysics, 208(1-3), 203–219.CrossRefGoogle Scholar
  63. Tomljenović, B., & Csontos, L. (2001). Neogene-Quaternary structures in the border zone between Alps, Dinarides and Pannonian basin (Hrvatsko zagorje and Karlovac basins, Croatia). International Journal of Earth Sciences (Geologische Rundschau), 90, 560–578.CrossRefGoogle Scholar
  64. Vadász, E. (1935). A Mecsekhegység (Das Mecsek-Gebirge) (p. 180). Budapest: Königlich Ungarische Geologische Anstalt.Google Scholar
  65. Wéber, B. (1985). Paleogén rétegek Szigetvár környékén (Palaeogene beds in the vicinity of Szigetvár (S-Hungary)). Földtani Közlöny (Bulletin of the Hungarian Geological Society), 115(1), 1–21.Google Scholar
  66. Wenz, W. (1931). Süsswassermollusken aus den Mediterranablagerungen des Mecsekgebirges. Archiv für Molluskenkunde, 63(3), 116–122.Google Scholar
  67. Zachos, J., Pagani, M., Sloan, S., Thomas, E., Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.CrossRefGoogle Scholar
  68. Zorn, I. & Coric, S. (2011). Middle Miocene freshwater ostracods from the Aflenz Basin (Eastern Alps, Austra)—first result. European Ostracologists’ Meeting 7 in Graz, 25th–28th of July 2011.Google Scholar

Copyright information

© Swiss Geological Society 2019

Authors and Affiliations

  1. 1.Department of Geology and MeteorologyUniversity of PécsPecsHungary
  2. 2.Mining and Geological Survey of HungaryBudapestHungary
  3. 3.MOL Group E&P LaboratoryBudapestHungary
  4. 4.Botanical DepartmentHungarian Natural History MuseumBudapestHungary
  5. 5.Eötvös Loránd UniversityBudapestHungary
  6. 6.Institute for Nuclear ResearchDebrecenHungary

Personalised recommendations