Meliatic blueschists and their detritus in Cretaceous sediments: new data constraining tectonic evolution of the West Carpathians

  • Dušan Plašienka
  • Štefan Méres
  • Peter Ivan
  • Milan Sýkora
  • Ján Soták
  • Alexander Lačný
  • Roman Aubrecht
  • Simona Bellová
  • Tomáš Potočný


The Western Carpathian Meliata Superunit (Meliaticum) includes a heterogeneous group of units—the blueschist-facies Bôrka Nappe and the very low-grade chaotic complexes—polygenous mélange containing material derived from various tectonic settings (Jaklovce Unit) and Jurassic oceanic sediments with olistostrome bodies (Meliata Unit s.s.). The high pressure/low temperature (HP/LT) metamorphism, development of tectonic mélanges and synorogenic sediments took place simultaneously during the Middle–Late Jurassic in connection with closing of the Meliata Ocean. We present some new data concerning composition of variegated mélanges related to the subduction–accretion processes of the Meliata Ocean and its continental margins. The polygenous mélange contains a mixture of fragments of HP/LT up to unmetamorphosed sedimentary and volcanic rocks, including blueschist-facies radiolarites. New electron microprobe chemical age data of monazites from metasediments of the Bôrka Nappe cluster in two peaks—earliest Cretaceous ages are interpreted in terms of post-exhumation, renewed burial during formation of the Meliatic accretionary wedge. The mid-Cretaceous ages might record the thermal relaxation during the thick-skinned nappe stacking and exhumation of the neighbouring Veporic metamorphic dome. In addition, we describe two distinct types of tourmalines and epidotes occurring in the Bôrka blueschists that document the prograde HP and retrograde LP metamorphic events. Detritus of the blueschist-facies rocks appears for the first time in the heavy mineral spectra of the Barremian–Aptian platform limestones. These limestones occur as clasts, together with glaucophanite pebbles, in the Albian–Cenomanian flysch formations of the Pieniny Klippen Belt (Klape Unit). We also review occurrences of other blueschist and ophiolitic erosional products in Cretaceous clastic formations and suggest that all have a Meliatic provenance.


Meliata Ocean High pressure/low temperature metamorphism Mélange Olistostrome Radiolarite Monazite dating Heavy minerals 



The authors appreciate the financial support from the Grant Agency for Science, Slovakia (projects VEGA 1/0085/17 and 2/0034/16) and from the Slovak Research and Development Agency (projects APVV-0212-12 and APVV-17-0170). The authors are indebted to László Fodor and an anonymous reviewer for their valuable comments and suggestions that helped to improve the scientific content a readability of the earlier version of the manuscript. The same applies to the editorial comments of Edwin Gnos and Stefan Schmid. The analyzed samples are stored at the Department of Geology and Palaeontology and Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, and at the Earth Science Institute of the Slovak Academy of Sciences in Banská Bystrica.

Supplementary material

15_2018_330_MOESM1_ESM.docx (75 kb)
Supplementary material 1 (DOCX 75 kb)


  1. Altherr, R., Topuz, G., Marschall, H., Zack, T., & Ludwig, T. (2004). Evolution of a tourmaline-bearing lawsonite eclogite from the Elekdağ area (Central Pontides, N Turkey): Evidence for infiltration of slab-derived B-rich fluids during exhumation. Contributions to Mineralogy and Petrology, 148, 409–425.CrossRefGoogle Scholar
  2. Andrusov, D. (1968). Grundriss der Tektonik der nördlichen Karpaten. Bratislava: Verlag Slovak. Akad. Wissensch.Google Scholar
  3. Árgyelán, G. B. (1996). Geochemical investigations of detrital chrome spinels as a tool to detect an ophiolitic source area (Gerecse Mountains, Hungary). Acta Geologica Hungarica, 39, 341–368.Google Scholar
  4. Árgyelán, G. B. (1997). Ophiolitic detritus in the Lower Cretaceous sandstones of Gerecse Mountains, Hungary: Petrography, detrital modes, provenance. Mineralia Slovaca, 29, 262–263.Google Scholar
  5. Árkai, P., Faryad, S. W., Vidal, O., & Balogh, K. (2003). Very low-grade metamorphism of sedimentary rocks of the Meliata unit, Western Carpathians, Slovakia: Implications of phyllosilicate characteristics. International Journal of Earth Sciences, 92, 68–85.Google Scholar
  6. Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, Ch., Gieré, R., et al. (2006). Recommended nomenclature of epidote-group minerals. European Journal of Mineralogy, 18, 551–567.CrossRefGoogle Scholar
  7. Aubrecht, R. (2001). Jurassic heavy mineral distribution provinces of the Western Carpathians. Mineralia Slovaca, 33(5), 473–486.Google Scholar
  8. Aubrecht, R., Gawlick, H.-J., Missoni, S., & Plašienka, D. (2012). Meliata type locality revisited: Evidence for the need of reinvestigation of the Meliata Unit and redefinition of the Meliata Mélange. Mineralia Slovaca, 44, 71.Google Scholar
  9. Aubrecht, R., & Krištín, J. (1995). Provenance of detrital tourmaline in the Lower Jurassic of the Malé Karpaty Mts. Mineralia Slovaca, 27(1), 37–44.Google Scholar
  10. Bačík, P., Uher, P., Sýkora, M., & Lipka, J. (2008). Low-Al tourmalines of the schorl–dravite–povondraite series in redeposited tourmalinites from the Western Carpathians, Slovakia. The Canadian Mineralogist, 46, 1117–1129.CrossRefGoogle Scholar
  11. Baud, A., Cherchi, A., & Schroeder, R. (1994). Dictyoconus arabicus Henson (Foraminiferida) from the Late Barremian of the Lhasa block (central Tibet). Rivista Italiana di Paleontologia e Stratigafia, 100, 383–394.Google Scholar
  12. Bellová, S., Aubrecht, R., & Mikuš, T. (2018). First results of systematic provenance analysis of the heavy mineral assemblages from the Albian to Cenomanian exotic flysch deposits of the Klape Unit, Tatricum, Fatricum and some adjacent units. Acta Geologica Slovaca, 10, 45–64.Google Scholar
  13. Birkenmajer, K. (1988). Exotic Andrusov Ridge: Its role in plate-tectonic evolution of the West Carpathian foldbelt. Studia Geologica Polonica, 41, 7–37.Google Scholar
  14. Broska, I., Janák, M., Bačík, P., & Kumar, S. (2015). Tourmaline from the eclogite hosting gneisses in the Tso Morari UHP metamorphic terrane (Ladakh, India): Characteristics and evolution. Periodico di Mineralogia, ECMS, 2015, 37–38.Google Scholar
  15. Channell, J. E. T., & Kozur, H. (1997). How many oceans? Meliata, Vardar, and Pindos oceans in Mesozoic Alpine paleogeography. Geology, 25(2), 183–186.CrossRefGoogle Scholar
  16. Császár, G. (1997). Sedimentary environments of the Urgonian formations of Hungary. Mineralia Slovaca, 29, 265–266.Google Scholar
  17. Császár, G., & Árgyelán, G. B. (1994). Stratigraphic and micromineralogic investigations on Cretaceous formations of the Gerecse Mountains, Hungary and their palaeogeographic implications. Cretaceous Research, 15, 417–434.CrossRefGoogle Scholar
  18. Csontos, L., & Vörös, A. (2004). Mesozoic plate-tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210, 1–56.CrossRefGoogle Scholar
  19. Dal Piaz, G. V., Martin, S., Villa, I. M., Gosso, G., & Marschalko, R. (1995). Late Jurassic blueschist facies pebbles from the Western Carpathian orogenic wedge and paleostructural implications for Western Tethys evolution. Tectonics, 14, 874–885.CrossRefGoogle Scholar
  20. Dallmeyer, R. D., Neubauer, F., & Fritz, H. (2008). The Meliata suture in the Carpathians: Regional significance and implications for the evolution of high-pressure wedges within collisional orogens. In S. Siegesmund, B. Fügenschuh, & N. Froitzheim (Eds.), Tectonic aspects of the Alpine–Dinaride–Carpathian system (Vol. 298, pp. 101–115). Geological Society London: Special Publication.Google Scholar
  21. Dallmeyer, R. D., Neubauer, F., Handler, R., Fritz, H., Müller, W., Pana, D., et al. (1996). Tectonothermal evolution of the internal Alps and Carpathians: Evidence from 40Ar/39Ar mineral and whole-rock data. Eclogae Geologicae Helvetiae, 89, 203–227.Google Scholar
  22. Dickinson, R. W. (1988). Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In K. L. Kleinspeh & C. Paola (Eds.), New perspectives in basin analysis (pp. 3–25). New York: Springer.CrossRefGoogle Scholar
  23. Ernst, W. G. (1988). Tectonic history of subduction zones inferred from retrograde blueschist PT paths. Geology, 16, 1081–1084.CrossRefGoogle Scholar
  24. Faryad, S. W. (1988). Glaucophanized amphibolites and gneisses near Rudník (Gemericum). Geologický zborník – Geologica Carpathica, 39, 6, 747–763.Google Scholar
  25. Faryad, S. W. (1995a). Phase petrology and PT conditions of mafic blueschists from the Meliata unit, West Carpathians, Slovakia. Journal of Metamorphic Geology, 13, 701–714.CrossRefGoogle Scholar
  26. Faryad, S. W. (1995b). Petrology and phase relations of low-grade high-pressure metasediments of the Meliata Unit, Western Carpathians, Slovakia. European Journal of Mineralogy, 7, 71–87.CrossRefGoogle Scholar
  27. Faryad, S. W. (1998). High-pressure metamorphic rocks of the Meliata unit vs. Bôrka nappe: Their correlation with blueschist pebbles in conglomerates from the Klape unit of the Klippen Belt. Mineralia Slovaca, 30, 235–240. (in Slovak with English summary).Google Scholar
  28. Faryad, S. W. (1999). Exhumation of the Meliata high-pressure rocks (Western Carpathians): Petrological and structural records in blueschists. Acta Montanistica Slovaca, 4, 137–144.Google Scholar
  29. Faryad, S. W., & Frank, W. (2011). Textural and age relations of polymetamorphic rocks in the HP Meliata Unit (Western Carpathians). Journal of Asian Earth Sciences, 42, 111–122.CrossRefGoogle Scholar
  30. Faryad, S. W., & Henjes-Kunst, F. (1997). Petrological and K–Ar and 40Ar–39Ar age constraints for the tectonothermal evolution of the high-pressure Meliata unit, Western Carpathians (Slovakia). Tectonophysics, 280, 141–156.CrossRefGoogle Scholar
  31. Faryad, S. W., & Hoinkes, G. (1999). Two contrasting mineral assemblages in the Meliata blueschists, Western Carpathians, Slovakia. Mineralogical Magazine, 63, 489–501.CrossRefGoogle Scholar
  32. Faryad, S. W., & Schreyer, W. (1997). Petrology and geological significance of high-pressure metamorphic rocks occurring as pebbles in the Cretaceous conglomerates of the Klippen Belt (West Carpathians, Slovakia). European Journal of Mineralogy, 9, 547–562.CrossRefGoogle Scholar
  33. Faryad, S. W., Spišiak, J., Horváth, P., Hovorka, D., Dianiška, I., & Józsa, S. (2005). Petrological and geochemical features of the Meliata mafic rocks from the sutured Triassic oceanic basin, Western Carpathians. Ofioliti, 30, 27–35.Google Scholar
  34. Faupl, P., & Wagreich, M. (2000). Late Jurassic to Eocene palaeogeography and geodynamic evolution of the Eastern Alps. Mitteilungen der Österreichischen Geologischen Gesellschaft, 92(1999), 79–94.Google Scholar
  35. Frank, W., & Schlager, W. (2006). Jurassic strike-slip versus subduction in the Eastern Alps. International Journal of Earth Sciences, 95, 431–450.CrossRefGoogle Scholar
  36. Frisch, W., & Gawlick, H.-J. (2003). The nappe structure of the Northern Calcareous Alps and its disintegration during Miocene tectonic extrusion—A contribution to understanding the orogenic evolution of the Eastern Alps. International Journal of Earth Sciences, 92, 712–727.Google Scholar
  37. Froitzheim, N., Plašienka, D., & Schuster, R. (2008). Alpine tectonics of the Alps and Western Carpathians. In T. McCann (Ed.), The Geology of Central Europe (Vol. 2, pp. 1141–1232)., Mesozoic and Cenozoic London: Geological Society Publishing House.Google Scholar
  38. Froitzheim, N., Schmid, S. M., & Frey, M. (1996). Mesozoic paleogeography and the timing of eclogite-facies metamorphism in the Alps: A working hypothesis. Eclogae Geologicae Helvetiae, 89, 81–110.Google Scholar
  39. Gawlick, H.-J., Aubrecht, R., Schlagintweit, F., Missoni, S., & Plašienka, D. (2015). Ophiolitic detritus in Kimmeridgian resedimented limestones and its provenance from an eroded obducted ophiolitic nappe stack south of the Northern Calcareous Alps (Austria). Geologica Carpathica, 66, 473–487.CrossRefGoogle Scholar
  40. Gawlick, H.-J., Frisch, W., Vecsei, A., Steiger, A., & Böhm, F. (1999). The change from rifting to thrusting in the Northern Calcareous Alps as recorded in Jurassic sediments. Geologische Rundschau, 87, 644–657.CrossRefGoogle Scholar
  41. Gawlick, H.-J., Havrila, M., Krystyn, L., Lein, R., & Mello, J. (2002). Conodont colour alteration indices (CAI) in the Central Western Carpathians and the Northern Calcareous Alps—A comparison. Geologica Carpathica, 53, 15–17.Google Scholar
  42. Haas, J., Kovács, S., Krystyn, L., & Lein, R. (1995). Significance of Late Permian–Triassic facies zones in terrane reconstruction in the Alpine–North Pannonian domain. Tectonophysics, 242, 19–40.CrossRefGoogle Scholar
  43. Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., & Bernoulli, D. (2010). Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth-Science Reviews, 102, 121–158.CrossRefGoogle Scholar
  44. Havrila, M. (2011). Hronicum: Palaeogeography and stratigraphy (late Pelsonian–Tuvalian), deformation and structure. Geologické práce, Správy, 117, 7–103. (in Slovak with English summary).Google Scholar
  45. Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F., Schumacher, J. C., et al. (2012). Nomenclature of the amphibole supergroup. American Mineralogist, 97, 2031–2048.CrossRefGoogle Scholar
  46. Henry, D. J., & Guidotti, C. V. (1985). Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. American Mineralogist, 70, 1–15.Google Scholar
  47. Henry, D. J., Novák, M., Hawthorne, F. C., Ertl, A., Dutrow, B., Uher, P., et al. (2011). Nomenclature of the tourmaline supergroup minerals. American Mineralogist, 96, 895–913.CrossRefGoogle Scholar
  48. Hók, J., Kováč, P., & Rakús, M. (1995). Structural investigations of the Inner Carpathians—Results and interpretation. Mineralia Slovaca, 27, 231–235. (in Slovak with English summary).Google Scholar
  49. Hók, J., Šujan, M., & Šipka, F. (2014). Tectonic division of the Western Carpathians: An overview and a new approach. Acta Geologica Slovaca, 6, 135–143. (in Slovak with English summary).Google Scholar
  50. Hovorka, D., Ivan, P., Mock, R., Rozložník, L., & Spišiak, J. (1990). Sediments of Gosau type near the Dobšiná Ice Cave: Ideas for their non-traditional interpretation. Mineralia Slovaca, 22, 519–525. (in Slovak with English summary).Google Scholar
  51. Hurai, V., Lexa, O., Schulmann, K., Montigny, R., Prochaska, W., Frank, W., et al. (2008). Mobilization of ore fluids during Alpine metamorphism: Evidence from hydrothermal veins in the Variscan basement of Western Carpathians, Slovakia. Geofluids, 8, 181–207.CrossRefGoogle Scholar
  52. Hurai, V., Paquette, J.-L., Lexa, O., Konečný, P., & Dianiška, I. (2015). U–Pb–Th geochronology of monazite and zircon in albitite metasomatites of the Rožňava–Nadabula ore field (Western Carpathians, Slovakia): Implications for the origin of hydrothermal polymetallic siderite veins. Mineralogy and Petrology, 109, 519–530.CrossRefGoogle Scholar
  53. Ivan, P. (2002a). Relics of the Meliata Ocean crust: Geodynamic implications of mineralogical, petrological and geochemical proxies. Geologica Carpathica, 53, 245–256.Google Scholar
  54. Ivan, P. (2002b). Relict magmatic minerals and textures in the HP/LT metamorphosed oceanic rocks of the Triassic–Jurassic Meliata Ocean (Inner Western Carpathians). Slovak Geological Magazine, 8, 109–122.Google Scholar
  55. Ivan, P. (2007). Lithostratigraphic units of Bôrka Nappe: Their brief characteristics and possible evolution. In Ľ. Jurkovič (Ed.), Cambelove dni 2007. Geochémia v súčasných geologických vedách (pp. 42–48). Bratislava: Comenius University. (in Slovak with English abstract).Google Scholar
  56. Ivan, P., & Méres, Š. (2009). Blueschist enclave in the Dobšiná serpentinite quarry: The evidence of the relation of the ultrabasic body to the Hačava Fm. of the Bôrka nappe (Meliatic Unit, Slovakia). Mineralia Slovaca, 41, 409–418. (in Slovak with English summary).Google Scholar
  57. Ivan, P., Méres, Š., & Sýkora, M. (2009). Magnesioriebeckite in red cherts and basalts (Jaklovce Fm. of the Meliatic Unit, Western Carpathians): An indicator of initial stage of the high-pressure subduction metamorphism. Mineralia Slovaca, 41, 419–432. (in Slovak with English summary).Google Scholar
  58. Ivan, P., & Sýkora, M. (1993). Finding of glaucophane-bearing rocks in Cretaceous conglomerates from Jasenov (Krížna nappe, Eastern Slovakia). Mineralia Slovaca, 25, 29–33. (in Slovak with English abstract).Google Scholar
  59. Ivan, P., Sýkora, M., & Demko, R. (2006). Blueschists in the Cretaceous exotic conglomerates of the Klape Unit (Pieniny Klippen Belt, Western Carpathians): Their genetic types and implications for source areas. Geologia, 32, 47–63.Google Scholar
  60. Ivanička, J., Snopko, L., Snopková, P., & Vozárová, A. (1989). Gelnica Group—Lower unit of Spišsko-gemerské rudohorie Mts. Geologický zborník – Geologica Carpathica, 40, 483–501.Google Scholar
  61. Jablonský, J., Michalík, J., Plašienka, D., & Soták, J. (1993). Sedimentary environments of the Solírov Formation and correlation with Lower Cretaceous turbidites in Central West Carpathians, Slovakia. Cretaceous Research, 14, 613–621.CrossRefGoogle Scholar
  62. Jablonský, J., Sýkora, M., & Aubrecht, R. (2001). Detritic Cr-spinels in Mesozoic sedimentary rocks of the Western Carpathians (overview of the latest knowledge). Mineralia Slovaca, 33, 487–498. (in Slovak with English summary).Google Scholar
  63. Janák, M., Froitzheim, N., Lupták, B., Vrabec, M., & Ravna, E. J. K. (2004). First evidence for ultrahigh-pressure metamorphism of eclogites in Pohorje, Slovenia: Tracing deep continental subduction in the Eastern Alps. Tectonics, 23, TC5014.CrossRefGoogle Scholar
  64. Janák, M., Plašienka, D., Frey, M., Cosca, M., Schmidt, S Th, Lupták, B., et al. (2001). Cretaceous evolution of a metamorphic core complex, the Veporic unit, Western Carpathians (Slovakia): PT conditions and in situ 40Ar/39Ar UV laser probe dating of metapelites. Journal of Metamorphic Geology, 19, 197–216.CrossRefGoogle Scholar
  65. Jaroš, J., Kratochvíl, M., & Zlocha, J. (1981). Mesoscopic structural analysis of serpentinite bodies in the Spišsko-gemerské rudohorie Mts. (Eastern Slovakia). Mineralia Slovaca, 13, 527–548. (in Slovak with English summary).Google Scholar
  66. Jeřábek, P., Lexa, O., Schulmann, K., & Plašienka, D. (2012). Inverse ductile thinning via lower crustal flow and fold-induced doming in the West Carpathian Eo-Alpine collisional wedge. Tectonics, 31, TC5002.CrossRefGoogle Scholar
  67. Kissová, D., Dunkl, I., Plašienka, D., Frisch, W., & Marschalko, R. (2005). The Pieninic exotic cordillera (Andrusov Ridge) revisited: New zircon FT ages of granite pebbles from Cretaceous conglomerates of the Pieniny Klippen Belt (Western Carpathians, Slovakia). Slovak Geological Magazine, 11, 17–28.Google Scholar
  68. Koller, F. (1985). Petrologie und Geochemie der Ophiolite des Penninikums am Alpenostrand. Jahrbuch der Geologischen Bundesanstalt, 128, 83–150.Google Scholar
  69. Konečný, P., Siman, P., Holický, I., Janák, M., & Kollárová, V. (2004). Methodics of monazite dating using an electron microprobe. Mineralia Slovaca, 36, 225–235. (in Slovak with English summary).Google Scholar
  70. Konzett, J., Krenn, K., Hauzenberger, Ch., Whitehouse, M., & Hoinkes, G. (2012). High-pressure tourmaline formation and fluid activity in Fe–Ti-rich eclogites from the Kreuzeck Mountains, Eastern Alps, Austria. Journal of Petrology, 53, 99–125.CrossRefGoogle Scholar
  71. Kovács, S., Less, Gy, Piros, O., Réti, Zs, & Róth, L. (1989). Triassic formations of the Aggtelek–Rudabánya Mountains (Northeastern Hungary). Acta Geologica Hungarica, 32, 31–63.Google Scholar
  72. Kovács, S., Sudar, M., Grădinaru, E., Gawlick, H.-J., Karamata, S., Haas, J., et al. (2011). Triassic evolution of the tectonostratigraphic units of the Circum-Pannonian region. Jahrbuch der Geologischen Bundesanstalt, 151, 199–280.Google Scholar
  73. Kövér, Sz, & Fodor, L. I. (2014). New constraints to the Mesozoic structural evolution of the Inner Western Carpathians achieved by metamorphic, structural and geochronological data. Geologia Sudetica, 42, 43–44.Google Scholar
  74. Kövér, Sz, Fodor, L., Judik, K., Németh, T., Balogh, K., & Kovács, S. (2009). Deformation history and nappe stacking in Rudabánya Hills (Inner Western Carpathians) unravelled by structural geologic, metamorphic petrological and geochronological studies of Jurassic sediments. Geodinamica Acta, 22, 3–29.CrossRefGoogle Scholar
  75. Kövér, Sz, Fodor, L., Kovács, Z., Klötzli, U., Haas, J., Zajzon, N., et al. (2018). Late Triassic acidic volcanic clasts in different Neotethyan sedimentary mélanges: Paleogeographic and geodynamic implications. International Journal of Earth Sciences, 107, 2975–2998.CrossRefGoogle Scholar
  76. Kozur, H. (1991). The evolution of the Meliata-Hallstatt ocean and its significance for the early evolution of the Eastern Alps and Western Carpathians. Paleogeography, Palaeoclimatology, Palaeocology, 87, 109–135.CrossRefGoogle Scholar
  77. Kozur, H., & Mock, R. (1973). Zum Alter und zur tektonischen Stellung der Meliata-Serie des Slowakischen Karstes. Geologický Zborník – Geologica Carpathica, 24, 365–374.Google Scholar
  78. Kozur, H., & Mock, R. (1997). New paleogeographic and tectonic interpretations in the Slovakian Carpathians and their implications for correlations with the Eastern Alps and other parts of the Western Tethys. Part II: Inner Western Carpathians. Mineralia Slovaca, 29, 164–209.Google Scholar
  79. Kurz, W., Neubauer, F., & Dachs, E. (1998). Eclogite meso- and microfabrics: Implications for the burial and exhumation history of eclogites in the Tauern Window (Eastern Alps) from P–T–d paths. Tectonophysics, 285, 183–209.CrossRefGoogle Scholar
  80. Lačný, A., Plašienka, D., & Vojtko, R. (2016). Structural evolution of the Turňa Unit constrained by fold and cleavage analyses and its consequences for the regional tectonic models of the Western Carpathians. Geologica Carpathica, 67, 177–193.CrossRefGoogle Scholar
  81. Leake, B. E., Wooley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., et al. (1997). Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61, 295–321.CrossRefGoogle Scholar
  82. Leško, B., & Varga, I. (1980). Alpine elements in the West Carpathian structure and their significance. Mineralia Slovaca, 12, 97–130.Google Scholar
  83. Less, Gy. (2000). Polyphase evolution of the structure of the Aggtelek-Rudabánya Mountains (NE Hungary), the southernmost element of the Inner Western Carpathians—A review. Slovak Geological Magazine, 6, 260–268.Google Scholar
  84. Lexa, O., Schulmann, K., & Ježek, J. (2003). Cretaceous collision and indentation in the West Carpathians: View based on structural analysis and numerical modeling. Tectonics, 22, 1066.CrossRefGoogle Scholar
  85. Li, X.-H., Putiš, M., Yang, Y.-H., Koppa, M., & Dyda, M. (2014). Accretionary wedge harzburgite serpentinization and rodingitization constrained by perovskite U/Pb SIMS age, trace elements and Sm/Nd isotopes: Case study from the Western Carpathians, Slovakia. Lithos, 205, 1–14.CrossRefGoogle Scholar
  86. Maheľ, M. (1986). Geological structure of the Western Carpathians. Part 1—Palaeoalpine units. Bratislava: Veda Publ. (in Slovak).Google Scholar
  87. Maluski, H., Rajlich, P., & Matte, Ph. (1993). 40Ar-39Ar dating of the Inner Carpathian Variscan Basement and Alpine mylonitic overprinting. Tectonophysics, 223, 313–337.CrossRefGoogle Scholar
  88. Marschall, H., Ludwig, T., Altherr, R., Kalt, A., & Tonarini, S. (2006). Syros metasomatic tourmaline: Evidence for very high-δ11B fluids in subduction zones. Journal of Petrology, 47, 1915–1942.CrossRefGoogle Scholar
  89. Mello, J. (ed.), Elečko, M., Pristaš, J., Reichwalder, P., Snopko, L., Vass, D., Vozárová, A., et al. (1997). Explanations to the geological map of the Slovenský kras Mts 1:50,000. Bratislava: Vydavateľstvo Dionýza Štúra (in Slovak with English summary).Google Scholar
  90. Mello, J., Ivanička, J., Grecula, P., Janočko, J., Jacko, S., Elečko, M., et al. (2008). General Geological Map of Slovak Republic (1:200 000), map sheet: 37—Košice. Bratislava: State Geol. Inst. of Dionýz Štúr.Google Scholar
  91. Mello, J., Reichwalder, P., & Vozárová, A. (1998). Bôrka nappe: High-pressure relic from the subduction–accretion prism of the Meliata ocean (Inner Western Carpathians, Slovakia). Slovak Geological Magazine, 4, 261–273.Google Scholar
  92. Michalík, J. (1994). Lower Cretaceous carbonate platform facies, Western Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology, 111, 263–277.CrossRefGoogle Scholar
  93. Michalík, J., & Soták, J. (1990). Lower Cretaceous shallow marine buildups in the Western Carpathians and their relationship to pelagic facies. Cretaceous Research, 11, 211–227.CrossRefGoogle Scholar
  94. Mišík, M. (1979). Pieniny Klippen Belt and the global tectonics model. In M. Maheľ & P. Reichwalder (Eds.), Czechoslovak geology and global tectonics (pp. 89–101). Bratislava: Veda Publ.Google Scholar
  95. Mišík, M. (1990). Urgonian facies in the West Carpathians. Knihovnička Zemního plynu a nafty, 9a, 25–54.Google Scholar
  96. Mišík, M., Jablonský, J., Fejdi, P., & Sýkora, M. (1980). Chromian and ferrian spinels from Cretaceous sediments of the West Carpathians. Mineralia Slovaca, 12, 209–228.Google Scholar
  97. Mišík, M., Jablonský, J., Mock, R., & Sýkora, M. (1981). Konglomerate mit exotischen Material in dem Alb der Zentralen Westkarpaten—Paläogeographische und tektonische Interpretation. Acta Geologica et Geographica Universitatis Comenianae, Geologica, 37, 5–55.Google Scholar
  98. Mišík, M., & Marschalko, R. (1988). Exotic conglomerates in flysch sequences: Examples from the West Carpathians. In M. Rakús, J. Dercourt & A. E. M. Nairn (Eds.), Evolution of the northern margin of Tethys. Mém. Soc. Géol. France, Nouvelle Série (Vol. I, No. 154, pp. 95–113). Paris: Société Géologique de France.Google Scholar
  99. Mišík, M., & Sýkora, M. (1981). Der pieninische exotische Rücken, rekonstruiert aus Geröllen karbonatischer Gesteine kretazischer Konglomerate der Klippenzone und der Manín-Einheit. Západné Karpaty, sér. geológia, 7, 7–111. (in Slovak with German summary).Google Scholar
  100. Missoni, S., & Gawlick, H.-J. (2011). Evidence for Jurassic subduction from the Northern Calcareous Alps (Berchtesgaden Alps; Austroalpine, Germany). International Journal of Earth Sciences, 100, 1605–1631.CrossRefGoogle Scholar
  101. Mock, R., Sýkora, M., Aubrecht, R., Ožvoldová, L., Kronome, B., Reichwalder, P., et al. (1998). Petrology and stratigraphy of the Meliaticum near the Meliata and Jaklovce Villages, Slovakia. Slovak Geological Magazine, 4, 223–260.Google Scholar
  102. Montel, J. M., Foret, S., Veschambre, M., Nicollet, C., & Provost, A. (1996). Electron microprobe dating of monazite. Chemical Geology, 131, 37–53.CrossRefGoogle Scholar
  103. Morimoto, N., Fabries, J., Ferguson, A. K., Ginzburg, I. V., Ross, M., Seifeit, F. A., et al. (1989). Nomenclature of pyroxenes. Canadian Mineralogist, 27, 143–156.Google Scholar
  104. Morton, A. C. (1984). Stability of heavy minerals in Tertiary sandstones from the North Sea Basin. Clay Minerals, 19, 287–308.CrossRefGoogle Scholar
  105. Nagel, T. J., Herwartz, D., Rexroth, S., Münker, C., Froitzheim, N., & Kurz, W. (2013). Lu–Hf dating, petrography, and tectonic implications of the youngest Alpine eclogites (Tauern Window, Austria). Lithos, 170–171, 179–190.CrossRefGoogle Scholar
  106. Nagy, G., Draganits, E., Demény, A., Pantó, G., & Árkai, P. (2002). Genesis and transformations of monazite, florencite and rhabdophane during medium grade metamorphism: Examples from the Sopron Hills, Eastern Alps. Chemical Geology, 191, 25–46.CrossRefGoogle Scholar
  107. Németh, Z., & Radvanec, M. (2014). Alpine nappe transport of the high-pressure exhumed blocks from the Meliatic oceanic realm collision zone over Gemericum (Inner Western Carpathians). Geologia Sudetica, 42, 65–66.Google Scholar
  108. Németh, Z., Radvanec, M., Kobulský, J., Gazdačko, Ľ., Putiš, M., & Zákršmídová, B. (2012). Allochthonous position of the Meliaticum in the North-Gemeric zone (Inner Western Carpathians) as demonstrated by paleopiezometric data. Mineralia Slovaca, 44, 57–64.Google Scholar
  109. Neubauer, F. (1994). Kontinentkollision in den Ostalpen. Geowissenschaften, 12, 136–140.Google Scholar
  110. Neubauer, F., Genser, J., & Handler, R. (2000). The Eastern Alps: Result of a two-stage collision process. Mitteilungen der Österreichischen Geologischen Gesellschaft, 92(1999), 117–134.Google Scholar
  111. Pettijohn, F. J. (1941). Persistence of heavy minerals and geologic age. Journal of Geology, 49, 610–625.CrossRefGoogle Scholar
  112. Pettijohn, F. J. (1975). Sedimentary rocks (3rd ed.). New York: Harper & Row Publisher.Google Scholar
  113. Plašienka, D. (1991). Mesozoic tectonic evolution of the epi-Variscan continental crust of the Western Carpathians—A tentative model. Mineralia Slovaca, 23, 447–457.Google Scholar
  114. Plašienka, D. (1995a). Passive and active margin history of the northern Tatricum (Western Carpathians, Slovakia). Geologische Rundschau, 84, 748–760.CrossRefGoogle Scholar
  115. Plašienka, D. (1995b). Mesozoic evolution of Tatric units in the Malé Karpaty and Považský Inovec Mts.: Implications for the position of the Klape and related units in western Slovakia. Geologica Carpathica, 46, 101–112.Google Scholar
  116. Plašienka, D. (1997). Cretaceous tectonochronology of the Central Western Carpathians (Slovakia). Geologica Carpathica, 48, 99–111.Google Scholar
  117. Plašienka, D. (1998). Paleotectonic evolution of the Central Western Carpathians during the Jurassic and Cretaceous. In M. Rakús (Ed.), Geodynamic development of the Western Carpathians (pp. 107–130). Bratislava: Geol. Surv. Slov. Rep., D. Štúr Publ.Google Scholar
  118. Plašienka, D. (2003). Development of basement-involved fold and thrust structures exemplified by the Tatric–Fatric–Veporic nappe system of the Western Carpathians. Geodinamica Acta, 16, 21–38.CrossRefGoogle Scholar
  119. Plašienka, D. (2012). Jurassic syn-rift and Cretaceous syn-orogenic, coarse-grained deposits related to opening and closure of the Vahic (South Penninic) Ocean in the Western Carpathians—an overview. Geological Quarterly, 56, 601–628.CrossRefGoogle Scholar
  120. Plašienka, D. (2018). Continuity and episodicity in the early Alpine tectonic evolution of the Western Carpathians: How large-scale processes are expressed by the orogenic architecture and rock record data. Tectonics, 37, 2029–2079.CrossRefGoogle Scholar
  121. Plašienka, D., Grecula, P., Putiš, M., Kováč, M., & Hovorka, D. (1997). Evolution and structure of the Western Carpathians: An overview. In P. Grecula, D. Hovorka, & M. Putiš (Eds.), Geological evolution of the Western Carpathians (pp. 1–24i). Monograph: Mineralia Slovaca.Google Scholar
  122. Plašienka, D., Jeřábek, P., Vojtko, R., Králiková, S., Janák, M., Ivan, P., et al. (2016). Alpine structural and metamorphic evolution during burial and exhumation of the Veporic basement and cover complexes. Bratislava: Comenius University Press.Google Scholar
  123. Plašienka, D., & Soták, J. (2015). Evolution of Late Cretaceous–Palaeogene synorogenic basins in the Pieniny Klippen Belt and adjacent zones (Western Carpathians, Slovakia): Tectonic controls over a growing orogenic wedge. Annales Societatis Geologorum Poloniae, 85, 43–76.CrossRefGoogle Scholar
  124. Platt, J. P. (1986). Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geological Society of America Bulletin, 97, 1037–1053.CrossRefGoogle Scholar
  125. Platt, J. P. (1993). Exhumation of high-pressure rocks: A review of concepts and processes. Terra Nova, 5, 119–133.CrossRefGoogle Scholar
  126. Pleuger, J., Roller, S., Walter, J. M., Jansen, E., & Froitzheim, N. (2007). Structural evolution of the contact between two Penninic nappes (Zermatt-Saas zone and Combin zone, Western Alps) and implications for the exhumation mechanism and palaeogeography. International Journal of Earth Sciences, 96, 229–252.CrossRefGoogle Scholar
  127. Pouchou, J. L., & Pichoir, F. (1985). “PAP” (φpZ) procedure for improved quantitative microanalysis. In J. T. Armstrong (Ed.), Microbeam analysis (pp. 104–106). San Francisco: San Francisco Press.Google Scholar
  128. Prokešová, R., Plašienka, D., & Milovský, R. (2012). Structural pattern and emplacement mechanisms of the Krížna cover nappe (Western Carpathians, Slovakia). Geologica Carpathica, 63, 13–32.CrossRefGoogle Scholar
  129. Putiš, M., Danišík, M., Ružička, P., & Schmiedt, I. (2014). Constraining exhumation pathway in accretionary wedge by (U–Th)/He thermochronology—Case study on Meliatic nappes in the Western Carpathians. Journal of Geodynamics, 81, 80–90.CrossRefGoogle Scholar
  130. Putiš, M., Radvanec, M., Sergeev, S., Koller, F., Michálek, M., Snárska, B., et al. (2011a). Metamorphosed succession of cherty shales with basalt and diastrophic breccia in olistolith of the Meliatic Jurassic accretion wedge near Jaklovce (Slovakia), dated on zircon (U–Pb SIMS SHRIMP). Mineralia Slovaca, 43, 1–18. (in Slovak with English summary).Google Scholar
  131. Putiš, M., Radvanec, M., Sergeev, S., Koller, F., Michálek, M., Snárska, B., et al. (2011b). The blueschist-associated perovskite–andradite-bearing serpentinized harzburgite from Dobšiná (the Meliata Unit), Slovakia. Journal of Geosciences, 57, 221–240.Google Scholar
  132. Putiš, M., Yang, Y.-H., Koppa, M., Dyda, M., & Šmál, P. (2015). U/Pb LA–ICP–MS age of metamorphic-metasomatic perovskite from serpentinized harzburgite in the Meliata Unit at Dobšiná, Slovakia: Time constraints of fluid–rock interaction in an accretionary wedge. Acta Geologica Slovaca, 7, 63–71.Google Scholar
  133. Rakús, M. (1996). Jurassic of the innermost Western Carpathians zones—Its importance and influence on the geodynamic evolution of the area. Slovak Geological Magazine, 3–4(96), 311–317.Google Scholar
  134. Rakús, M., & Sýkora, M. (2001). Jurassic of Silicicum. Slovak Geological Magazine, 7, 53–84.Google Scholar
  135. Ratschbacher, L., Behrmann, J. H., & Pahr, A. (1990). Penninic windows at the eastern end of the Alps and their relation to the intra-Carpathian basins. Tectonophysics, 172, 91–105.CrossRefGoogle Scholar
  136. Reichwalder, P. (1970). Some notes on occurrences of glaucophanite rocks near Hačava. Geologické práce, Správy, 53, 157–165. (in Slovak with English summary).Google Scholar
  137. Reichwalder, P. (1982). Structural characteristic of root zones of some nappes in innermost parts of West Carpathians. In M. Maheľ (Ed.), Alpine structural elements: Carpathian–Balkan–Caucasus–Pamir orogene zone (pp. 43–56). Bratislava: Veda Publ.Google Scholar
  138. Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., et al. (2008). The Alpine–Carpathian–Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183.CrossRefGoogle Scholar
  139. Schmid, S. M., Fügenschuh, B., Kissling, E., & Schuster, R. (2004). Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae, 97, 93–117.CrossRefGoogle Scholar
  140. Schroeder, R., van Buchem, F. S. P., Cherchi, A., Baghbani, D., Vincent, B., Immenhauser, A., et al. (2010). Revised orbitolinid biostratigraphic zonation for the Barremian—Aptian of the eastern Arabian Plate and implications for regional stratigraphic correlations. GeoArabia Special Publication, 4(1), 49–96.Google Scholar
  141. Šímová, M. (1982). Eclogitoid rock in pebbles of Cretaceous conglomerates of Klippen Belt. Geologické práce, Správy, 77, 55–74. (in Slovak with English summary).Google Scholar
  142. Šímová, M. (1985). Magmatogene Gesteine kretazischer Konglomerate des westlichen Teiles der Klippen- und Manín-Zone der Westkarpaten. Západné Karpaty, sér. Mineralógia, petrografia, geochémia, metalogenéza, 10, 9–110. (in Slovak with German summary).Google Scholar
  143. Šímová, M., & Šamajová, E. (1982). Lawsonite from rock pebbles in the Cretaceous conglomerate of the Pieniny Klippen Belt. Mineralia Slovaca, 14, 431–441. (in Slovak with English summary).Google Scholar
  144. Stampfli, G. M., & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restores synthetic oceanic isochrones. Earth and Planetary Science Letters, 196, 17–33.CrossRefGoogle Scholar
  145. Stampfli, G., & Hochard, C. (2009). Plate tectonics of the Alpine realm. In J. B. Murphy, J. D. Keppie, & A. J. Hynes (Eds.), Ancient orogens and modern analogues (Vol. 327, pp. 89–111)., Special Publication London: Geological Society.Google Scholar
  146. Stampfli, G., & Kozur, H. (2006). Europe from the Variscan to the Alpine cycles. In D. G. Gee & R. A. Stephenson (Eds.), European lithosphere dynamics (Vol. 32, pp. 57–82)., Memoirs London: Geological Society.Google Scholar
  147. Stüwe, K., & Schuster, R. (2010). Initiation of subduction in the Alps: Continent or ocean? Geology, 38, 175–178.CrossRefGoogle Scholar
  148. Sýkora, M., Halásová, E., & Boorová, D. (1997). Blue amphiboles and microfossils from the Mesozoic basement of the Vienna Basin (borehole Smolinské 27), Slovakia. Mineralia Slovaca, 29, 227–233.Google Scholar
  149. Sýkora, M., & Ožvoldová, L. (1996). Lithoclasts of Middle Jurassic radiolarites in debris flow sediments from Silica Nappe (locality Bleskový prameň, Slovak Karst, Western Carpathians. Mineralia Slovaca, 28, 21–25.Google Scholar
  150. Thöni, M., & Jagoutz, E. (1993). Isotopic constraints for eo-Alpine high-P metamorphism in the Austroalpine nappes of the Eastern Alps: Bearing on Alpine orogenesis. Schweizerische Mineralogische und Petrographische Mitteilungen, 73, 177–189.Google Scholar
  151. Vilas, L., Masse, J. P., & Arias, C. (1995). Orbitolina episodes in carbonate platform evolution: The early Aptian model from SE Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 119, 35–45.CrossRefGoogle Scholar
  152. Vojtko, R., Králiková, S., Jeřábek, P., Schuster, R., Danišík, M., Fügenschuh, B., et al. (2016). Geochronological evidence for the Alpine tectono-thermal evolution of the Veporic Unit (Western Carpathians, Slovakia). Tectonophysics, 666, 48–65.CrossRefGoogle Scholar
  153. Von Eynatten, H., & Gaupp, R. (1999). Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: Constraints from framework petrography, heavy mineral analysis and mineral chemistry. Sedimentary Geology, 124, 81–111.CrossRefGoogle Scholar
  154. Vozárová, A. (1996). Tectono-sedimentary evolution of late Paleozoic basins based on interpretation of lithostratigraphic data (Western Carpathians, Slovakia). Slovak Geological Magazine, 3–4(96), 251–271.Google Scholar
  155. Vozárová, A., Konečný, P., Šarinová, K., & Vozár, J. (2014). Ordovician and Cretaceous tectonothermal history of the Southern Gemericum Unit from microprobe monazite geochronology (Western Carpathians, Slovakia). International Journal of Earth Sciences, 103, 1005–1022.CrossRefGoogle Scholar
  156. Vozárová, A., Konečný, P., Vozár, J., & Šmelko, M. (2008). Upper Jurassic–Lower Cretaceous tectonothermal events in the Southern Gemeric Permian rocks deduced from electron microprobe dating of monazite (Western Carpathians, Slovakia). Geologica Carpathica, 59(2), 89–102.Google Scholar
  157. Vozárová, A., Šmelko, M., Paderin, I., & Larionov, A. (2012). Permian volcanics in the Northern Gemericum and Bôrka Nappe system: U–Pb zircon dating and the implications for geodynamic evolution (Western Carpathians, Slovakia). Geologica Carpathica, 63, 191–200.CrossRefGoogle Scholar
  158. Vozárová, A., & Vozár, J. (1988). Late Paleozoic in West Carpathians. Bratislava: Geol. Inst. D. Štúr.Google Scholar
  159. Vozárová, A., & Vozár, J. (1992). Tornaicum and Meliaticum in borehole Brusník BRU-1, Southern Slovakia. Acta Geologica Hungarica, 35(2), 97–116.Google Scholar
  160. Wagreich, M., Faupl, P., & Schlagintweit, F. (1995). Heavy minerals from Urgonian pebbles of the Northern Calcareous Alps (Austria, Bavaria): Further evidence for an intra-Austroalpine suture zone. Geologica Carpathica, 46, 197–204.Google Scholar
  161. Wagreich, M., & Marschalko, R. (1995). Late Cretaceous to Early Tertiary palaeogeography of the Western Carpathians (Slovakia) and the Eastern Alps (Austria): Implications from heavy mineral data. Geologische Rundschau, 84, 187–199.CrossRefGoogle Scholar
  162. Waśkowska, A. (2014). Selective agglutination of tourmaline grains by foraminifera in a deep-water flysch environment (Eocene Hieroglyphic Beds, Silesian Nappe, Polish Outer Carpathians). Geological Quarterly, 58, 337–352.CrossRefGoogle Scholar
  163. Weber, S., Sandmann, S., Miladinova, I., Fonseca, R. O. C., Froitzheim, N., Münker, C., et al. (2015). Dating the initiation of Piemonte-Liguria Ocean subduction: Lu–Hf garnet chronometry of eclogites from the Theodul Glacier Unit (Zermatt-Saas zone, Switzerland). Swiss Journal of Geosciences, 108, 183–199.CrossRefGoogle Scholar
  164. Whitney, D. L., Bernard, W., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.CrossRefGoogle Scholar
  165. Winkler, W. (1996). The tectono-metamorphic evolution of the Cretaceous northern Adriatic margin as recorded by sedimentary series (western part of the Eastern Alps). Eclogae Geologicae Helvetiae, 89, 527–551.Google Scholar

Copyright information

© Swiss Geological Society 2018

Authors and Affiliations

  1. 1.Department of Geology and Palaeontology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  2. 2.Department of Geochemistry, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  3. 3.Earth Science Institute of the Slovak Academy of SciencesBratislavaSlovakia

Personalised recommendations