Advertisement

Swiss Journal of Geosciences

, Volume 111, Issue 3, pp 537–548 | Cite as

Coral- and oyster-microbialite patch reefs in the aftermath of the Triassic–Jurassic biotic crisis (Sinemurian, Southeast France)

  • Simon Boivin
  • Mélanie Gretz
  • Bernard Lathuilière
  • Nicolas Olivier
  • Annachiara Bartolini
  • Rossana Martini
Article
  • 144 Downloads

Abstract

The end of the Triassic and the Early Jurassic are intervals characterised by profound biotic and environmental changes, accompanied by dramatic decreases in marine fauna diversity. Corals were strongly affected and assemblages underwent a severe reduction; compared with those of the Upper Triassic, the Early Jurassic is traditionally defined as holding a “reef gap”. A Sinemurian coral-microbialites patch reef, located in southern France in the Hérault department (Le Perthus locality), is here described. This bioconstruction developed in a shallow mixed siliciclastic-carbonate inner ramp setting. The reef volume is composed of up to 70% of an intercoral facies mostly microbialites, with subordinated sediments (approximately 20–30% of the intercoral facies). Therefore, the patch reef can be defined as a coral-microbialite bioconstruction, in which microbialites were the main framebuilders. The coral assemblage has low diversity and is dominated by massive to branching colonies of Chondrocoenia clavellata. This highlights the reef diversity after the T/J boundary crisis. The Le Perthus patch reef could have acted as an edge for the dominant currents and probably induced reductions in hydrodynamic energy and sedimentation on one of its sides. Consequently, it could have triggered the growth of small lateral bioconstructions, composed of oysters and microbialites, uniquely on one of its sides. The evolution of the facies shows that the Le Perthus patch reef grew in a shallowing-upward setting accompanied by an increase in siliciclastic inputs. The rate of bioerosion and the faunal assemblage suggest that the bioconstructions could have been developed in a mesotrophic environment.

Keywords

Sinemurian Early Jurassic Corals Microbialites Patch reef Depositional environment Southern France 

Notes

Acknowledgements

This contribution is part of an international collaboration aimed at evaluating palaeontological renewal through time and space as well as the palaeoecologic and palaeogeographic evolution of coral/reefal communities spanning the latest Triassic to Early Jurassic (Swiss NSF projects 200021_130238 and 200020_156422 to R.M.).

Supplementary material

15_2018_310_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 kb)
15_2018_310_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 13 kb)
15_2018_310_MOESM3_ESM.pdf (66 kb)
Supplementary material 3 (PDF 65 kb)
15_2018_310_MOESM4_ESM.docx (13 kb)
Supplementary material 4 (DOCX 13 kb)
15_2018_310_MOESM5_ESM.pdf (551 kb)
Supplementary material 5 (PDF 550 kb)
15_2018_310_MOESM6_ESM.docx (13 kb)
Supplementary material 6 (DOCX 13 kb)
15_2018_310_MOESM7_ESM.pdf (92 kb)
Supplementary material 7 (PDF 91 kb)
15_2018_310_MOESM8_ESM.docx (17 kb)
Supplementary material 8 (DOCX 16 kb)
15_2018_310_MOESM9_ESM.docx (14 kb)
Supplementary material 9 (DOCX 13 kb)
15_2018_310_MOESM10_ESM.pdf (1.9 mb)
Supplementary material 10 (PDF 1982 kb)
15_2018_310_MOESM11_ESM.docx (14 kb)
Supplementary material 11 (DOCX 13 kb)
15_2018_310_MOESM12_ESM.pdf (1.5 mb)
Supplementary material 12 (PDF 1578 kb)
15_2018_310_MOESM13_ESM.docx (14 kb)
Supplementary material 13 (DOCX 13 kb)
15_2018_310_MOESM14_ESM.pdf (1.4 mb)
Supplementary material 14 (PDF 1426 kb)
15_2018_310_MOESM15_ESM.docx (18 kb)
Supplementary material 15 (DOCX 17 kb)
15_2018_310_MOESM16_ESM.docx (13 kb)
Supplementary material 16 (DOCX 13 kb)
15_2018_310_MOESM17_ESM.pdf (32 kb)
Supplementary material 17 (PDF 31 kb)
15_2018_310_MOESM18_ESM.docx (14 kb)
Supplementary material 18 (DOCX 13 kb)
15_2018_310_MOESM19_ESM.pdf (30 kb)
Supplementary material 19 (PDF 30 kb)

References

  1. Alabouvette, B., Arrondeau, J.-P., Aubague, M., Bodeur, Y., Dubois, P., Mattei, J., et al. (1988). Notice explicative de la feuille le Caylar au 1/50 000 (p. 63). France: Éditions du BRGM.Google Scholar
  2. Arrondeau, J.-P. (1982). Etude sédimentologique du Lias inférieur carbonaté du Seuil Caussenard et de ses abords (Languedoc). PhD dissertation. Université de Nantes, France, p. 281.Google Scholar
  3. Bartolini, A., Guex, J., Spangenberg, J. E., Schoene, B., Taylor, D. G., Schaltegger, U., et al. (2012). Disentangling the Hettangian carbon isotope record: Implications for the aftermath of the end-Triassic mass extinction. Geochemistry, Geophysics, Geosystems, 13(1), 1–11.Google Scholar
  4. Baudrimont, A. F., & Dubois, P. (1977). Un bassin mésogéen du domaine péri-alpin: le Sud-Est de la France. Bulletin du Centre de recherches Elf Exploration Production, Elf-Aquitaine, 1(1), 261–308.Google Scholar
  5. Benton, M. J. (1995). Diversification and extinction in the history of life. Science, 268, 52–58.Google Scholar
  6. Berner, R. A., & Beerling, D. J. (2007). Volcanic degassing necessary to produce a CaCO3 undersaturated ocean at the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1–4), 368–373.Google Scholar
  7. Bertling, M., & Insalaco, E. (1998). Late Jurassic coral/microbial reefs from the northern Paris Basin—facies, palaeoecology and palaeobiogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 139, 139–175.Google Scholar
  8. Camoin, G., Gautret, P., Montaggioni, L. F., & Gabioch, G. (1999). Nature and environmental significance of microbialites in Quaternary reefs: The Tahiti paradox. Sedimentary Geology, 126, 271–304.Google Scholar
  9. Clémence, M.-E., Bartolini, A., Gardin, S., Paris, G., Beaumont, V., & Page, K. P. (2010a). Early Hettangian benthic–planktonic coupling at Doniford (SW England) Palaeoenvironmental implications for the aftermath of the end-Triassic crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 295, 102–115.Google Scholar
  10. Clémence, M. E., Gardin, S., Bartolini, A., Paris, G., Beaumont, V., & Guex, J. (2010b). Bentho-planktonic evidence from the Austrian Alps for a decline in sea-surface carbonate production at the end of the Triassic. Swiss Journal of Geosciences, 103, 293–315.Google Scholar
  11. Coates, A. G., & Jackson, B. C. (1987). Clonal growth, algal symbiosis, and reef formation by corals. Paleobiology, 13, 363–378.Google Scholar
  12. Coates, A. G., & Oliver, W. A. J. (1973). Coloniality in Zoantharian Corals. In R. S. Boardman, A. A. Cheetham, & W. A. J. Oliver (Eds.), Animal colonies development and function through time (pp. 3–27). Dowden: Hutchinson & Ross Inc.Google Scholar
  13. Cuif, J. P., Dauphin, Y., Freiwald, A., Gautret, P., & Zibrowius, H. (1999). Biochemical markers of zooxanthellae symbiosis in soluble matrices of skeleton of 24 Scleractinia species. Comparative Biochemistry Physiology A Molecular Integrative Physiology, 123(3), 269–278.Google Scholar
  14. Debrand-Passard, S., Courbouleix, S., & Lienhardt, M.-J. (1984). Synthèse géologique du Sud-Est de la France. Stratigraphie et paléogéographie BRGM., Orléans, p. 615.Google Scholar
  15. Dupraz, C. (1999). Paléontologie, paléoécologie et évolution des faciès récifaux de l’Oxfordien moyen-supérieur (Jura suisse et français). PhD dissertation, Université de Fribourg, Switzerland, p. 200.Google Scholar
  16. Dupraz, C., & Strasser, A. (1999). Microbialites and Micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, swiss Jura Mountains). Facies, 40, 101–130.Google Scholar
  17. Dupraz, C., & Strasser, A. (2002). Nutritional modes in coral-microbialites reefs (Jurassic, Oxfordian, Switzerland): evolution of trophic structure as a response to environmental change. Palaios, 17, 449–471.Google Scholar
  18. Elmi, S. (1990). Stages in the evolution of late Triassic and Jurassic carbonate platforms: the western margin of the Subalpine Basin (Ardèche, France). In M. E. Tucker, J. L. Wilson, P. D. Crevello, J. R. Sarg & J. F. Read (Eds.), Carbonate Platforms: Facies, Sequences and Evolution (pp. 109–144). Special Publication international Association of Sedimentologists and Blackwell Scientific Publications, Oxford, London, Edinburgh, Boston, Melbourne.Google Scholar
  19. Fagerstrom, J. A. (1987). The evolution of reef communities (p. 600). New York: Wiley.Google Scholar
  20. Flügel, E. (2002). Triassic reef patterns. In W. Kiessling, E. Flügel, & J. Golonka (Eds.), Phanerozoic reef patterns (pp. 391–463). SEPM Special Publication, 72. Tulsa, Oklahoma.Google Scholar
  21. Flügel, E., & Kiessling, W. (2002). Patterns of Phanerozoic reef crises. In W. Kiessling, E. Flügel, & J. Golonka (Eds.), Phanerozoic Reef Patterns (pp. 691–733). SEPM Special Publication, 72. Tulsa, Oklahoma.Google Scholar
  22. Frankowiak, K., Kret, S., Mazur, M., Meibom, A., Kitahara, M. V., & Stolarski, J. (2016). Fine-scale skeletal banding can distinguish symbiotic from asymbiotic species among modern and fossil Scleractinian corals. PLoS One, 11(1), e0147066.Google Scholar
  23. Gautret, P., Cuif, J. P., & Freiwald, A. (1997). Composition of soluble mineralizing matrices in zooxanthellate and non-zooxanthellate scleractinian corals: Biochemical assessment of photosynthetic metabolism through the study of a skeletal feature. Facies, 36, 189–194.Google Scholar
  24. Geister, J., & Lathuilière, B. (1991). Jurassic Coral Reefs of the Northeastern Paris Basin (Luxembourg and Lorraine). In Excursions-guidebook, VII (pp. 112). Münster: Int. A. Symp. of. Fossil. Cnidaria and Porifera.Google Scholar
  25. Gill, G. A., Santantonio, M., & Lathuilière, B. (2004). The depth of pelagic deposits in the Tethyan Jurassic and the use of corals: An example from the Apennines. Sedimentary Geology, 166, 311–334.Google Scholar
  26. Gretz, M., Lathuilière, B., & Martini, R. (2015). A new coral with simplified morphology from the oldest known Hettangian (Early Jurassic) reef in southern France. Acta Paleontologica Polonica, 60(2), 277–286.Google Scholar
  27. Gretz, M., Lathuilière, B., Martini, R., & Bartolini, A. (2013). The Hettangian corals of the Isle of Skye (Scotland): An opportunity to better understand the palaeoenvironmental conditions during the aftermath of the Triassic–Jurassic boundary crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 376, 132–148.Google Scholar
  28. Guex, J., Bartolini, A., Atudorei, V., & Taylor, D. (2004). High resolution ammonite and carbon-isotope stratigraphy across the Triassic–Jurassic Boundary at New York Canyon (Nevada). Earth Planetary Science Letter, 225, 29–41.Google Scholar
  29. Guex, J., Pilet, S., Müntener, O., Bartolini, A., Spangenberg, J., Schoene, B., et al. (2016). Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction. Nature Communication, Scientific Reports, 6, 23168.Google Scholar
  30. Guex, J., Schoene, B., Bartolini, A., Spangenberg, J. E., Schaltegger, U., O’Dogherty, L., et al. (2012). Geochronological constraints on post-extinction recovery of the ammonoids and carbon cycle perturbations during the Early Jurassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 346, 1–11.Google Scholar
  31. Hallock, P. (1988). The role of nutrient availibility in bioerosion: Consequences to carbonate buildups. Palaeogeography, Palaeoclimatology, Palaeoecology, 63, 275–291.Google Scholar
  32. Hallock, P., & Schlager, W. (1986). Nutrient excess and the demise of coral reefs and carbonate plateforms. Palaios, 1, 389–398.Google Scholar
  33. Hamon, Y. (2004). Morphologie, évolution latérale et signification géodynamique des discontinuités sédimentaires Exemple du Lias de la marge Ouest du Bassin du Sud-Est (France). PhD dissertation, Université de Montpellier, France, 294 pp.Google Scholar
  34. Hamon, Y., & Merzeraud, G. (2007). C and O isotope stratigraphy in shallow-marine carbonate: A tool for sequence stratigraphy (example from the Lodève region, peritethian domain). Swiss Journal of Geosciences, 100(1), 71–84.Google Scholar
  35. Hamon, Y., Merzeraud, G., & Combes, P.-J. (2005). Des cycles hautes fréquences de variations du niveau marin relatif enregistrés dans les discontinuités sédimentaires: Un exemple dans le Lias inférieur de Lodève (Sud-Est de la France). Bulletin de la Société géologique de France, 176(1), 57–68.Google Scholar
  36. Hautmann, M. (2004). Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction. Facies, 50(2), 257–261.Google Scholar
  37. Hautmann, M. (2006). Shell mineralogical trends in epifaunal Mesozoic bivalves and their relationship to seawater chemistry and atmospheric carbon dioxide concentration. Facies, 52, 417–433.Google Scholar
  38. Helm, C., & Schülke, I. (1998). A coral-microbialite Patch Reef from the Late Jurassic (florigemma-Bank, Oxfordian) of NW Germany (Süntel Mountains). Facies, 39, 75–104.Google Scholar
  39. Hesselbo, S. P., Robinson, S. A., Surlyk, F., & Piasecki, S. (2002). Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism? Geology, 30, 251–254.Google Scholar
  40. Hönish, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., et al. (2012). The geological record of ocean acidification. Science, 335, 1058–1063.Google Scholar
  41. Insalaco, E. (1996a). The use of Late Jurassic coral growth bands as palaeoenvironmental indicators. Palaeontology, 39, 413–431.Google Scholar
  42. Insalaco, E. (1996b). Upper Jurassic microsolenid biostromes of northern and central Europe: Facies and depositionnal environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 121, 169–194.Google Scholar
  43. Jaubert, J. (1977). Light, metabolism and growth forms of the hermatypic scleractinian coral Synarea convexa Verrill in the lagoon of Moorea (French Polynesia). Proceedings 3rd International Coral Reef Symposium Miami, 1, 483–488.Google Scholar
  44. Kasprak, A. H., Sepúlveda, J., Price-Waldman, R., Williford, K. H., Schoepfer, S. D., Haggart, J. W., et al. (2015). Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction. Geology, 43(4), 307–310.Google Scholar
  45. Kiessling, W. (2011). Patterns and process of ancient reef crises. Paleontological Society Papers, 17, 1–14.Google Scholar
  46. Kiessling, W., Aberhan, M., Brenneis, B., & Wagner, P. J. (2007). Extinction trajectories of benthic organisms across the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1–4), 201–222.Google Scholar
  47. Kiessling, W., Flügel, E., & Golonka, J. (1999). Paleoreef maps: Evaluation of a comprehensive database on phanerozoic reefs. American Association of Petroleum Geologists Bulletin, 83(10), 1552–1587.Google Scholar
  48. Kiessling, W., Roniewicz, E., Villier, L., Léonide, P., & Struck, U. (2009). An Early Hettangian coral reef in southern France: Implications for the end-Triassic reef crisis. Palaios, 24, 657–671.Google Scholar
  49. Lathuilière, B. (2000). Coraux constructeurs du Bajocien inférieur de France. 2ème partie. Geobios, 33, 153–181.Google Scholar
  50. Lathuilière, B., & Marchal, D. (2009). Extinction, survival and recovery of corals from the Triassic to Middle Jurassic time. Terra Nova, 21(1), 57–66.Google Scholar
  51. Leinfelder, R. R., Nose, M., Schmid, D. U., & Werner, W. (1993). Microbial crusts of the Late Jurassic: Composition, palaeoecological significance and importance in reef construction. Facies, 29, 195–230.Google Scholar
  52. Leinfelder, R. R., & Schmid, D. U. (2000). Mesozoic reefal thrombolites and other Microbolites. In R. E. Riding & S. M. Awramik (Eds.), Microbial sediments (pp. 289–294). Berlin: Springer.Google Scholar
  53. Leinfelder, R. R., Schmid, D. U., Nose, M. & Werner, W. (2002). Jurassic reef patterns-The expression of a changing globe. Patterns of Phanerozoic reef crises. In W. Kiessling, E. Flügel, & J. Golonka (Eds.), Phanerozoic Reef Patterns (pp. 465–520). SEPM Special Publication, 72. Tulsa, Oklahoma.Google Scholar
  54. Leinfelder, R. R., Werner, W., & Nose, M. (1996). Paleoecology, growth parameters and dynamics of coral, sponge and microbolite reefs from the late jurassic. In J. Reitner, F. Neuweiler, & F. Gunkel, F. (Eds.), Global and regional controls on biogenic sedimentation. I. Reef evolution. Sb2 (pp. 227–248). Research Reports, Göttinger Arbeiten zur Geologie und Paläontologie.Google Scholar
  55. Martindale, R. C., Berelson, W. M., Corsetti, F. A., Bottjer, D. J., & West, A. J. (2012). Constraining carbonate chemistry at a potential ocean acidification event (the Triassic–Jurassic boundary) using the presence of corals and coral reefs in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 350–352, 114–123.Google Scholar
  56. Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, M., Bellieni, G., & DeMin, A. (1999). Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science, 284, 616–618.Google Scholar
  57. McCook, L. J. (2001). Competition between corals and algal turfs along a gradient of terrestrial influence in the nearshore central Great Barrier Reef. Coral Reefs, 19, 419–425.Google Scholar
  58. McCook, L. J., Jompa, J., & Diaz-Pulido, G. (2001). Competition between corals and algae on coral reefs. Coral Reefs, 19, 400–417.Google Scholar
  59. McElwain, J. C., Beerling, D. J., & Woodward, F. I. (1999). Fossil plants and global warming at the Triassic–Jurassic boundary. Science, 285, 1386–1390.Google Scholar
  60. McElwain, J. C., Wagner, P. J., & Hesselbo, S. P. (2009). Fossil plant relative abundances indicate sudden loss of Late Triassic biodiversity in East Greenland. Science, 324, 1554–1556.Google Scholar
  61. McRoberts, C. A., Krystyn, L., & Hautmann, M. (2012). Macrofaunal response to the end-Triassic mass extinction in the West-Tethyan Kössen Basin, Austria. Palaios, 27(9), 607–616.Google Scholar
  62. Melas, P. (1982). Etude sédimentologique. paléogéographique et géochimique du Lias carbonaté du Nord-Lodèvois. Application à la reconnaissance et à l’interprétation d’amas metallifères Mémoire du Centre d’Etudes et de Recherches Géologiques et Hydrogéologiques. Université des Sciences et Techniques du Languedoc. Montpellier II, p. 419.Google Scholar
  63. Melnikova, G. K., & Roniewicz, E. (2012). Early Jurassic corals of the Pamir Mountains- a new Triassic–Jurassic transitional fauna. Geologica Belgica, 15(4), 376–381.Google Scholar
  64. Merzeraud, G., & Colombié, C. (1999). Evolution morphologique des profils de dépôts dans le Sinémurien de la marge cévenole (région de Lodève). Comptes Rendus de l’Académie des Sciences—Series IIA—Earth and Planetary Science, 329(11), 779–786.Google Scholar
  65. Michard, A., Aubague, M., Lefavrais-Raymond, A., & L’Homer, A. (1979). Le Lotharingien supérieur dans le bassin des Causses: stratigraphie et évolution du bassin. Bulletin de la Société géologique de France, 7(t. XXI, n°1), 3–10.Google Scholar
  66. Muscatine, L., Goiran, C., Land, L., Jaubert, J., Cuif, J. P., & Allemand, D. (2005). Stable isotopes (d13C and d15 N) of organic matrix from coral skeleton. Proceedings of the National Academy of Sciences, 102, 1525–1530.Google Scholar
  67. Mutti, M., & Hallock, P. (2003). Carbonate systems along nutrient and temperature gradients: Some sedimentological and geochemical constraints. International Journal of Earth Sciences, 92(4), 465–475.Google Scholar
  68. Newell, N. D. (1963). Crises in the history of life. Scientific American, 208(2), 76–95.Google Scholar
  69. Olivier, N., Hantzpergue, P., Gaillard, C., Pittet, B., Leinfelder, R. R., Schmid, D. U., et al. (2003). Microbialite morphology, structure and growth: A model of the Upper Jurassic reefs of the Chay Peninsula (western France). Palaeogeography, Palaeoclimatology, Palaeoecology, 193, 383–404.Google Scholar
  70. Olivier, N., Lathuilière, B., & Thiry-Bastien, P. (2006). Growth models of Bajocian coral-microbialite reefs of Chargey-lès-Port (eastern France): Palaeoenvironmental interpretations. Facies, 52, 113–127.Google Scholar
  71. Olivier, N., Pittet, B., Gaillard, C., & Hantzpergue, P. (2007). High-frequency palaeoenvironmental fluctuations recorded in Jurassic coral-and sponge-microbialite bioconstructions. Comptes Rendus Palevol, 6, 21–36.Google Scholar
  72. Olsen, P. E., Kent, D. V., Sues, H.-D., Koeberl, C., Huber, H., Montanari, A., et al. (2002). Ascent of dinosaurs linked to Ir anomaly at Triassic–Jurassic boundary. Science, 296, 1305–1307.Google Scholar
  73. Pálfy, J., Demeny, A., Haas, J., Htenyi, M., Orchard, M. J., & Veto, I. (2001). Carbon isotope anomaly at the Triassic–Jurassic boundary from a marine section in Hungary. Geology, 29, 1047–1050.Google Scholar
  74. Poulton, T. P. (1989). A Lower Jurassic coral reef, Telkwa Range, British Columbia. Canadian Society of Petroleum Geologists Memoir, 13, 754–757.Google Scholar
  75. Raup, D. M., & Sepkoski, J. J. (1982). Mass extinctions in the marine fossil record. Science, 215(4539), 1501–1503.Google Scholar
  76. Reolid, M., Gaillard, C., & Lathilière, B. (2007). Microfacies, microtaphonomic traits and foraminiferal assemblages from Upper Jurassic oolitic-coral limestones: Stratigraphic fluctuations in a shallowing-upward sequence (French Jura, Middle Oxfordian). Facies, 53, 553–574.Google Scholar
  77. Richoz, S., van de Schootbrugge, B., Pross, J., Puttmann, W., Quan, T. M., Lindström, S., et al. (2012). Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nature Geoscience, 5, 662–667.Google Scholar
  78. Rosen, B. R., & Turnšek, D. (1989). Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary boundary. Memoirs of the Association of Australasian Paeontologists, 8, 355–370.Google Scholar
  79. Ruhl, M., Bonis, N. R., Reichart, G.-J., Sinninghe Damsté, J. S., & Kurschner, W. M. (2011). Atmospheric carbon injection linked to end-triassic mass extinction. Science, 333, 430–434.Google Scholar
  80. Schaltegger, U., Guex, J., Bartolini, A., Schoene, B., & Ovtcharova, M. (2008). Precise U–Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth and Planetary Science Letters, 267, 266–275.Google Scholar
  81. Schmid, D. U. (1996). Marine Mikrobolithe und Mikroinkrustierer aus dem Oberjura. Profil, 9, 101–251.Google Scholar
  82. Schmieder, M., Buchner, E., Schwarz, W. H., Trieloff, M., & Lambert, P. (2010). A Rhaetian 40Ar/39Ar age for the Rochechouart impact structure (France) and implications for the latest Triassic sedimentary record. Meteoritics & Planetary Science, 45, 1225–1242.Google Scholar
  83. Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., & Blackburn, T. J. (2010). Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology, 38, 387–390.Google Scholar
  84. Sprachta, S., Camoin, G., Golubic, S., & Le Campion, T. (2001). Microbialites in a modern lagoonal environment: Nature and distribution, Tikehau atoll (French Polynesia). Palaeogeography, Palaeoclimatology, Palaeoecology, 175, 103–124.Google Scholar
  85. Stanley, G. D., Jr. (2001). Introduction to Reef Ecosystems and Their Evolution. In G. D. Jr Stanley (Ed.), The history and sedimentology of ancient reef systems (17th ed., pp. 1–39). New York: Kluwer academic/Plenum Publishers.Google Scholar
  86. Stanley, G. D., Jr., & Beauvais, L. (1994). Corals from an Early Jurassic coral reef in British Columbia: Refuge on an oceanic island reef. Lethaia, 27(1), 34–47.Google Scholar
  87. Stanley, G. D., Jr., & Helmle, K. P. (2010). Middle Triassic coral growth bands and their implication for photosymbiosis. Palaios, 25, 754–763.Google Scholar
  88. Stanley, G. D., Jr., & McRoberts, C. A. (1993). A coral reef in the Telkwa Range, British Columbia: The earliest Jurassic example. Canadian Journal of Earth Sciences, 30, 819–831.Google Scholar
  89. Stanley, G. D., Jr., & Swart, P. (1995). Evolution of the coral-zooxanthellae symbiosis during the Triassic: A geochemical approach. Paleobiology, 21, 179–199.Google Scholar
  90. Stanton, R. J., & Flügel, E. (1989). Problems with reef models: The Late Triassic Steinplatte ‘reef’ (Northern Alps, Salzburg/Tyrol, Austria). Facies, 20, 1–138.Google Scholar
  91. Tanner, L. H., Hubert, J. F., Coffey, B. P., & McInerney, D. P. (2001). Stability of atmospheric CO2 level across the Triassic–Jurassic boundary. Nature, 411, 675–677.Google Scholar
  92. Tanner, L. H., Lucas, S. G., & Chapman, M. G. (2004). Assessing the record and causes of Late Triassic extinctions. Earth-Science Reviews, 65(1–2), 103–139.Google Scholar
  93. Tornabene, C., Martindale, R. C., Wang, X. T., & Schaller, M. F. (2017). Detecting photosymbiosis in fossil scleractinian corals. Scientific Reports, 7, Art. Numb. 9465.Google Scholar
  94. Van de Schootbrugge, B., Payne, J. L., Tomasovych, A., Pross, J., Fiebig, J., Brenbrahim, M., et al. (2008). Carbon cycle perturbation and stabilization in the wake of the Triassic–Jurassic boundary mass-extinction event. Geochemistry, Geophysics, Geosystems, 9(4), Q04028.Google Scholar
  95. Van de Schootbrugge, B., Quan, T. M., Lindström, S., Pütmann, W., Heunisch, C., Pross, J., et al. (2009). Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience, 2, 589–594.Google Scholar
  96. Van de Schootbrugge, B., Tremolada, F., Rosenthal, Y., Bailey, T. R., Feist-Birkhardt, S., Brinkhuis, H., et al. (2007). End-Triassic calcification crisis and blooms of organic-walled ‘disaster species’. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 12–141.Google Scholar
  97. Van de Schootbrugge, B., & Wignall, P. B. (2015). A tale of two extinctions: converging end-Permian and end-Triassic scenarios. Geological Magazine, 153(2), 332–354.Google Scholar
  98. Ward, P. D., Haggart, J. W., Carter, E. S., Wilbur, D., Tipper, H. W., & Evans, T. (2001). Sudden productivity collapse associated with the Triassic–Jurassic boundary mass extinction. Science, 292, 1148–1151.Google Scholar

Copyright information

© Swiss Geological Society 2018

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of GenevaGenevaSwitzerland
  2. 2.Université de Lorraine, CNRS, Laboratorie GeoRessources, UMR 7359Vandoeuvre-lès-Nancy CedexFrance
  3. 3.Université Clermont Auvergne, CNRS, Laboratoire Magmas et VolcansClermont-FerrandFrance
  4. 4.Muséum National d’Histoire Naturelle, Département Histoire de la TerreUSM 203 CNRS UMR 5143 Paléobiodiversité et PaléoenvironnementsParis Cedex 05France

Personalised recommendations