Advertisement

Swiss Journal of Geosciences

, Volume 111, Issue 3, pp 573–588 | Cite as

Flooding a landscape: impact of Holocene transgression on coastal sedimentology and underwater archaeology in Kiladha Bay (Greece)

  • Morgane Surdez
  • Julien Beck
  • Dimitris Sakellariou
  • Hendrik Vogel
  • Patrizia Birchler Emery
  • Despina Koutsoumba
  • Flavio S. Anselmetti
Article
  • 190 Downloads

Abstract

Franchthi Cave, bordering Kiladha Bay, in Greece, is a key archaeological site, due to its long occupation time, from ~ 40,000 to ~ 5000 year BP. To date, no clear evidence of Neolithic human dwellings in the cave was found, supporting the assumption that Neolithic people may have built a village where there is now Kiladha Bay. During the Neolithic period/Early Holocene, wide areas of the bay were indeed emerged above sea level. Bathymetric and seismic data identified a terrace incised by a valley in ~ 1 to 2 m sediment depth. Eight sediment cores, up to 6.3-m-long, were retrieved and analysed using petrophysical, sedimentological, geochemical, and chronostratigraphic methods. The longest core extends into the exposure surface, consisting of a layer of carbonate rubble in a finer matrix, representing weathering processes. Dated organic remains place this unit at ~ 8500 cal year BP. It is overlain by stiff silty mud representing an estuarine environment. This mud is capped by reduced sediments with roots marking an exposure surface. A shell-layer, dated to ~ 6300 cal year BP, overlies this terrestrial sequence, reflecting the marine transgression. This layer occurs at 10.8 mbsl, 7.7 m deeper than the global sea level at that time, suggesting tectonic subsidence in the area. It is overlain by finer-grained marine carbonate-rich sediments. The top of the core shows traces of eutrophication, pebbles and marine shells, all likely a result of modern anthropogenic processes. These results are interpreted in the context of human occupation: the exposed surface contains pottery sherds, one dating to the Early to Middle Neolithic period, indicating that Neolithic people were present in this dynamic landscape interacting with a migrating coastline. Even if the artefacts are isolated, future investigations of the submerged landscape off Franchthi Cave might lead to the discovery of a Neolithic village, which eventually became buried under marine sediments.

Keywords

Shallow marine sediments Submerged prehistoric landscapes Franchthi Cave Argolic Gulf Tectonic subsidence 

Notes

Acknowledgements

We would like to thank all the people who helped us for the coring in Greece, as well as K. D. Vitelli for her identification of Neolithic pottery, Erika Gobet for identifying some of the biological remains, and Eike Neubert for his expertise in molluscs. We are grateful to Julijana Krbanjevic for the CNS analysis, Nicole Schwendener for the CT-scanning and Sönke Szidat for the AMS 14C-dating. We also thank the two anonymous reviewers for the constructive improvements.

References

  1. Ariztegui, D., Asioli, A., Lowe, J. J., Trincardi, F., Vigliotti, L., Tamburini, F., et al. (2000). Palaeoclimate and the formation of sapropel S1: Inferences from Late Quaternary lacustrine and marine sequences in the central Mediterranean region. Palaeogeography, Palaecolimatology, Palaecoecology, 158, 215–240.CrossRefGoogle Scholar
  2. Avramidis, P., Iliopoulos, G., Nikolaou, K., Kontopoulos, N., Koutsodendris, A., & van Wijngaarden, G. J. (2017). Holocene sedimentology and coastal geomorphology of Zakynthos Island, Ionian Sea: A history of a divided Mediterranean island. Palaeogeography, Palaecolimatology, Palaecoecology, 487, 340–354.CrossRefGoogle Scholar
  3. Bailey, G. N., & Flemming, N. C. (2008). Archaeology of the continental shelf: Marine resources, submerged landscapes and underwater archaeology. Quaternary Science Reviews, 27, 2153–2165.CrossRefGoogle Scholar
  4. Bannert, D. (1977). Geological map of Greece, 1/50000, Lighourion sheet. Athens: Institute of Geological and Mineral Exploration (IGME).Google Scholar
  5. Beck, J., & Koutsoumba, D. (2015). Baie de Kiladha 2014: Expédition Terra Submersa. Antike Kunst, 58, 187–190.Google Scholar
  6. Beck, J., & Koutsoumba, D. (2016). Baie de Kiladha 2015. Antike Kunst, 59, 153–156.Google Scholar
  7. Beck, J., & Koutsoumba, D. (2017). Baie de Kiladha 2016. Antike Kunst, 60, 164–167.Google Scholar
  8. Beck, J., Sakellariou, D., & Koutsoumba, D. (2017). Submerged Neolithic landscapes off Franchthi Cave: The measurements from the Terra Submersa expedition and their implications. In A. Sarris, E. Kalogiropoulou, T. Kalayci, & L. Karimali (Eds.), Communities, Landscapes, and Interaction in Neolithic Greece. Proceedings of International Conference, Rethymno 29-30 May 2015 (pp. 261–268). Ann Arbor, MI: International Monographs in Prehistory.  Google Scholar
  9. Berger, J.-F., & Guilaine, J. (2009). The 8200 cal BP abrupt environmental change and the Neolithic transition: A Mediterranean perspective. Quaternary International, 200, 31–49.CrossRefGoogle Scholar
  10. Blaauw, M., & Christen, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6(3), 457–474.Google Scholar
  11. Bonsall, C., Macklin, M. G., Payton, R. W., & Boroneant, A. (2002). Climate, floods and river gods: Environmental change and the Meso-Neolithic transition in southeast Europe. Before Farming: The archaeology of Old World hunter-gatherers, 3–4(2), 1–15.CrossRefGoogle Scholar
  12. Bruins, H. J., van der Plicht, J., & MacGillivray, J. A. (2009). The Minoan Santorini eruption and tsunami deposits in Palaikastro (Crete): Dating by geology, archaeology, 14C, and Egyptian chronology. Radiocarbon, 51(2), 397–411.CrossRefGoogle Scholar
  13. Carlier, A., Riera, P., Amouroux, J.-M., Bodiou, J.-Y., Desmalades, M., & Grémare, A. (2009). Spatial heterogeneity in the food web of a heavily modified Mediterranean coastal lagoon: Stable isotope evidence. Aquatic Biology, 5, 167–179.CrossRefGoogle Scholar
  14. Croudace, I. W., Rindby, A., & Rothwell, R. G. (2006). ITRAX: Description and evaluation of a new multi-function X-ray core scanner. In R. G. Rothwell (Ed.), New techniques in sediment core analysis (pp. 51–63). London: Geological Society, Special Publications, 267.Google Scholar
  15. Dearing, J. (1999). Environmental magnetic susceptibility: Using the Bartington MS2 System (2nd ed., p. 54). Kenilworth: Chi.Google Scholar
  16. Farrand, W. R. (2000). Excavations at Franchthi Cave, Greece. Fascicle 12, Depositional history of Franchthi Cave: Sediments, stratigraphy, and chronology. With a report on the background of the Franchthi Project by Thomas W. Jacobsen (p. 135). Bloomington and Indianapolis: Indiana University Press.Google Scholar
  17. Friedrich, W. L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T., & Talamo, S. (2006). Santorini eruption radiocarbon dated to 1627–1600 B.C. Science, 312, 548.CrossRefGoogle Scholar
  18. Gaitanakis, P., & Fotiades, A. (2007). Geological map of Greece, 1/50000, Spetses-Spetsopoula sheet. Athens: Institute of Geological and Mineral Exploration (IGME).Google Scholar
  19. Gifford, J. (1983). Core sampling of a Holocene marine sedimentary sequence and underlying Neolithic cultural material off Franchthi Cave, Greece. In P. M. Masters & N. C. Flemming (Eds.), Quaternary coastlines and marine archaeology: Towards the Prehistory of land bridges and continental shelves (pp. 269–281). London: Academic.Google Scholar
  20. Gooday, A. J., Jorissen, F., Jorissen, F., Levin, L. A., Middelburg, J. J., Naqvi, S. W. A., et al. (2009). Historical records of coastal eutrophication-induced hypoxia. Biogeosciences, 6, 1–39.CrossRefGoogle Scholar
  21. Karageorgis, A. P., Anagnostou, C. L., Sioulas, A. I., Kassoli-Fournaraki, A. E., & Eleftheriadis, G. E. (1997). Sedimentology and geochemistry of surface sediments in a semi-enclosed marine area, Central Aegean-Greece. Oceanologica Acta, 20(3), 513–520.Google Scholar
  22. Kylander, M. E., Klaminder, J., Wohlfarth, B., & Löwemark, L. (2013). Geochemical responses to paleoclimatic changes in southern Sweden since the Late Glacial: The Hässeldala Port lake sediment record. Journal of Paleolimnology, 50, 57–70.CrossRefGoogle Scholar
  23. Lambeck, K. (1996). Sea-level change and shore-line evolution in Aegean Greece since Upper Palaeolithic time. Antiquity, 70(269), 588–611.CrossRefGoogle Scholar
  24. Lambeck, K., Rouby, H., Purcell, A., Sun, Y., & Sambridge, M. (2014). Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National academy of Sciences of the United States of America, 111(43), 15296–15303.CrossRefGoogle Scholar
  25. Löwemark, L., Chen, H.-F., Yang, T.-N., Kylander, M., Yu, E.-F., Hsu, Y.-W., et al. (2011). Normalizing XRF-scanner date: A cautionary note on the interpretation of high-resolution records from organic-rich lakes. Journal of Asian Earth Sciences, 40, 1250–1256.CrossRefGoogle Scholar
  26. Meyers, P. A. (1997). Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27(5/6), 213–250.CrossRefGoogle Scholar
  27. Meyers, P. A., & Teranes, J. L. (2001). Sediment organic matter. In W. M. Last & J. P. Smol (Eds.), Tracking environmental change using lake sediments. Physical and geochemical methods (Vol. 2, pp. 239–270). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  28. Minoura, K., Imamura, F., Kuran, U., Nakamura, T., Papadopoulos, G. A., Takahashi, T., et al. (2000). Discovery of Minoan tsunami deposits. Geology, 28(1), 59–62.CrossRefGoogle Scholar
  29. Mourtzas, N. D., & Kolaiti, E. (2013). Historical coastal evolution of the ancient harbor of Aegina in relation to the Upper Holocene relative sea level changes in the Saronic Gulf, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 411–425.CrossRefGoogle Scholar
  30. Ntageretzis, K., Vött, A., Fischer, P., Hadler, H., Emde, K., Röbke, B. R., et al. (2015a). Palaeotsunami history of the Elos plain (Evrotas River delta, Peloponnese, Greece). Zeitschrift für Geomorphologie, Supplementary Issues, 59(4), 253–273.CrossRefGoogle Scholar
  31. Ntageretzis, K., Vött, A., Fischer, P., Hadler, H., Emde, K., Röbke, B. R., et al. (2015b). Traces of repeated tsunami landfall in the vicinity of Limnothalassa Moustou (Gulf of Argolis—Peloponnese, Greece). Zeitschrift für Geomorphologie, Supplementary Issues, 59(4), 301–317.CrossRefGoogle Scholar
  32. Papadopoulos, G. A., Gràcia, E., Urgeles, R., Sallares, V., De Martini, P. M., Pantosti, D., et al. (2014). Historical and pre-historical tsunamis in the Mediterranean and its connected seas: Geological signatures, generation mechanisms and coastal impacts. Marine Geology, 354, 81–109.CrossRefGoogle Scholar
  33. Pavlopoulos, K., Fouache, E., Sidiropoulou, M., Triantaphyllou, M., Vouvalidis, K., Syrides, G., et al. (2013). Palaeoenvironmental evolution and sea-level changes in the coastal area of NE Lemnos Island (Greece) during the Holocene. Quaternary International, 308–309, 80–88.CrossRefGoogle Scholar
  34. Perlès, C., Quiles, A., & Valladas, H. (2013). Early seventh-millennium AMS dates from domestic seeds in the Initial Neolithic at Franchthi Cave (Argolid, Greece). Antiquity, 87, 1001–1015.CrossRefGoogle Scholar
  35. Pribyl, D. W. (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma, 156, 75–83.CrossRefGoogle Scholar
  36. Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., et al. (2013). IntCal13 and Marine13 radiocarbon age calibration curves of 0–50,000 years cal BP. Radiocarbon, 55(4), 1869–1887.CrossRefGoogle Scholar
  37. Rotzoll, K., & Fletcher, C. H. (2013). Assessment of groundwater inundation as a consequence of sea-level rise. Nature Climate Change, 3, 477–481.CrossRefGoogle Scholar
  38. Sakellariou, D., Beck, J., Rousakis, G., Georgiou, P., Panagiotopoulos, I., Morfis, I., Tsampouraki-Kraounaki, K., Zavitsanou, A. (2015). Submerged prehistoric landscapes off Franchthi Cave, East Argolic Gulf: Preliminary results. 11th Panhellenic Symposium on Oceanography and Fisheries, Proceedings, pp. 993–996.Google Scholar
  39. Sakellariou, D., & Galanidou, N. (2015). Pleistocene submerged landscapes and Palaeolithic archaeology in the tectonically active Aegean region. In J. Harff, G. Bailey, & F. Lüth (Eds.), Geology and archaeology: Submerged landscapes of the continental shelf (pp. 145–178). London: Geological Society, Special Publications, 411.Google Scholar
  40. Sandgren, P., & Snowball, I. (2001). Application of mineral magnetic techniques to paleolimnology. In W. M. Last & J. P. Smol (Eds.), Tracking environmental change using lake sediments. Physical and geochemical methods (Vol. 2, pp. 217–238). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  41. Simmons, A. H. (2007). The Neolithic revolution in the Near East: Transforming the human landscape (p. 360). Tucson: University of Arizona Press.Google Scholar
  42. Stuiver, M., & Polach, H. A. (1977). Discussion: Reporting of 14C data. Radiocarbon, 19(3), 355–363.CrossRefGoogle Scholar
  43. Tjallingii, R., Röhl, U., Kölling, M., & Bickert, T. (2007). Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments. Geochemistry, Geophysics, Geosystems, 8(2), Q02004.  https://doi.org/10.1029/2006gc001393.CrossRefGoogle Scholar
  44. van Andel, T. H. (1987). The landscape. In T. H. van Andel & S. B. Sutton (Eds.), Excavations at Franchthi Cave, Greece. Fascicle 2, Landscape and people of the Franchthi region. With contributions by Julie M. Hansen and Charles J. Vitaliano (pp. 3–62). Bloomington and Indianapolis: Indiana University Press.Google Scholar
  45. van Andel, T. H. (1989). Late Quaternary sea-level changes and archaeology. Antiquity, 63, 733–745.CrossRefGoogle Scholar
  46. van Andel, T. H., Jacobsen, T. W., Jolly, J. B., & Lianos, N. (1980). Late Quaternary history of the coastal zone near Franchthi Cave, southern Argolid, Greece. Journal of Field Archaeology, 7(4), 389–402.Google Scholar
  47. van Andel, T. H., & Lianos, N. (1983). Prehistoric and historic shorelines of the southern Argolid peninsula: A subbottom profiler study. International Journal of Nautical Archaeology and Underwater Exploration, 12(4), 303–324.CrossRefGoogle Scholar
  48. Vitaliano, C. J. (1987). Plate 1: Geology of Ermioni basin and environs, Peloponnesos, Greece. In T. W. Jacobsen & W. R. Farrand (Eds.), Excavations at Franchthi Cave, Greece. Fascicle 1, Franchthi Cave and Paralia: Maps, plans, and sections. With contributions by F.A. Cooper and C.J. Vitaliano (Plate 1). Bloomington and Indianapolis: Indiana University Press.Google Scholar
  49. Vogel, H., Wagner, B., Zanchetta, G., Sulpizio, R., & Rosén, P. (2010). A paleoclimate record with tephrochronological age control for the last glacial-interglacial cycle from Lake Ohrid, Albania and Macedonia. Journal of Paleolimnology, 44, 295–310.CrossRefGoogle Scholar
  50. Vött, A. (2007). Relative sea level changes and regional tectonic evolution of seven coastal areas in NW Greece since the mid-Holocene. Quaternary Science Reviews, 26, 894–919.CrossRefGoogle Scholar
  51. Weiberg, E., Unkel, I., Kouli, K., Holmgren, K., Avramidis, P., Bonnier, A., et al. (2016). The socio-environmental history of the Peloponnese during the Holocene: Towards an integrated understanding of the past. Quaternary Science Reviews, 136, 40–65.CrossRefGoogle Scholar
  52. Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The Journal of Geology, 30(5), 377–392.CrossRefGoogle Scholar
  53. Wilkinson, T. J., & Duhon, S. T. (1990). Excavations at Franchthi Cave, Greece. Fascicle 6, Franchthi Paralia: The sediments, stratigraphy, and offshore investigations. With contributions by John A. Gifford and Sytze Bottema (p. 207). Bloomington and Indianapolis: Indiana University Press.Google Scholar

Copyright information

© Swiss Geological Society 2018

Authors and Affiliations

  1. 1.Institute of Geological Sciences and Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  2. 2.Département des Sciences de l’AntiquitéUniversity of GenevaGenevaSwitzerland
  3. 3.Institute of OceanographyHellenic Centre for Marine ResearchAnavyssosGreece
  4. 4.Ephorate of Underwater AntiquitiesHellenic Ministry of Culture and SportsAthensGreece

Personalised recommendations