Advertisement

Swiss Journal of Geosciences

, Volume 111, Issue 3, pp 383–398 | Cite as

Multi-proxy facies analysis of the Opalinus Clay and depositional implications (Mont Terri rock laboratory, Switzerland)

  • Bruno Lauper
  • David Jaeggi
  • Gaudenz Deplazes
  • Anneleen Foubert
Article
  • 118 Downloads

Abstract

Located in NW Switzerland, the Mont Terri rock laboratory is a research facility primarily investigating the Opalinus Clay as potential host rock for deep geological disposal of radioactive waste. In the Mont Terri area, this Jurassic shale formation is characterized by three distinctive lithofacies: a shaly facies, a carbonate-rich sandy facies and a sandy facies. However, the lithological variability at dm- to cm-scale is not yet fully understood and a detailed lithofacies characterization is currently lacking. Within the present study, petrographic descriptions at micro- and macro-scale, geophysical core logging (P-wave velocity and gamma-ray density), geochemical core logging (X-ray fluorescence) and organic matter quantification (Rock-Eval pyrolysis) were combined on a 27.6 m long Opalinus Clay drillcore comprising the three major lithofacies. The high-resolution investigation of the core resulted into a refinement of the three-fold lithofacies classification, and revealed high intra-facies heterogeneity. Five subfacies were defined and linked to distinctive depositional regimes. The studied succession is interpreted as a shallowing-upward trend within a storm-wave-dominated epicontinental sea characterized by relative shallow water depths.

Keywords

Mudstones Early-Middle Jurassic Sedimentary petrography Multi-sensor core logger XRF core scanner Rock-Eval pyrolysis 

Notes

Acknowledgements

The authors thank Paul Bossart (Swisstopo) and André Strasser (University of Fribourg) for having launched the present project. Flavio Anselmetti and Hendrik Vogel (University of Bern) are sincerely acknowledged for their help with MSCL and XRF core logging, respectively, as well as Thierry Adatte (University of Lausanne) for providing Rock-Eval measurements. The technical teams of the University of Fribourg and the Mont Terri Project are warmly thanked for their technical and logistic support. Jens Becker (Nagra), the reviewers Andreas Wetzel (University of Basel), Bernhard Hostettler and Ursula Menkveld-Gfeller (Natural History Museum Bern), and the editor Silvia Spezzaferri (University of Fribourg) are thanked for their helpful comments on an earlier version of the manuscript. Finally, the partners involved in the SO-Experiment of the Mont Terri Project (Swisstopo and BGR) and the University of Fribourg are acknowledged for their financial contribution.

References

  1. Bläsi, H.-R. (1987). Lithostratigraphie und Korrelation der Doggersedimente in den Bohrungen Weiach, Riniken und Schafisheim. Eclogae Geologicae Helvetiae, 80, 415–430.Google Scholar
  2. Bläsi, H.-R., Moeri, A., & Bossart, P. (1996). Results of the phase 1 drilling campaign. Mont Terri technical report, TR 96-01, Federal Office of Topography (swisstopo), Wabern, Switzerland. http://www.mont-terri.ch.
  3. Bläsi, H.-R., Peters, T., & Mazurek, M. (1991). Der Opalinus-Ton des Mt. Terri (Kanton Jura): Lithologie, Mineralogie und phyiko-chemische Gesteinsparameter. Nagra Interner Bericht, NTB 90-60, Nagra, Wettingen, Switzerland. http://www.nagra.ch.
  4. Bossart, P., Bernier, F., Birkholzer, J., Bruggeman, C., Connolly, P., Dewonck, S., et al. (2017). Mont Terri rock laboratory, 20 years of research: Introduction, site characteristics and overview of experiments. Swiss Journal of Geosciences, 110, 3–22.CrossRefGoogle Scholar
  5. Bossart, P., & Thury, M. (2008). Mont Terri Rock Laboratory. Project, programme 1996 to 2007 and results. Reports of the Swiss Geological Survey, No. 3, Federal Office of Topography (swisstopo), Wabern, Switzerland. http://www.mont-terri.ch.
  6. Burkhalter, R. M. (1996). Die Passwang-Alloformation (unteres Aalénien bis unteres Bajocien) im zentralen und nördlichen Schweizer Jura. Eclogae Geologicae Helvetiae, 89, 875–934.Google Scholar
  7. Caër, T., Maillot, B., Souloumiac, P., Leturmy, P., Frizon de Lamotte, D., & Nussbaum, C. (2015). Mechanical validation of balanced cross-sections: The case of the Mont Terri anticline at the Jura front (NW Switzerland). Journal of Structural Geology, 75, 32–48.CrossRefGoogle Scholar
  8. Contini, D. (1970). L’Aalénien et le Bajocien du Jura Franc-Comtois. Ph.D. dissertation, University of Besançon, Besançon, FranceGoogle Scholar
  9. Dickson, J. A. D. (1965). A modified staining technique for carbonates in thin section. Nature, 205, 587.CrossRefGoogle Scholar
  10. Dott, R. H., & Bourgeois, J. (1982). Hummocky stratification: Significance of its variable bedding sequences. Geological Society of American Bulletin, 93, 663–680.CrossRefGoogle Scholar
  11. Espitalié, J., Deroo, G., & Marquis, F. (1985). La pyrolyse Rock-Eval et ses applications; première et deuxième parties. Revue de l’Institut Français du Pétrole, 40, 563–579. (755–784).CrossRefGoogle Scholar
  12. Etter, W. (1990). Paläontologische Untersuchungen im unteren Opalinuston der Nordschweiz. Ph.D. dissertation, University of Zurich, Zurich, SwitzerlandGoogle Scholar
  13. Etter, W. (1996). Pseudoplanktonic and benthic invertebrates in the Middle Jurassic Opalinum Clay, northern Switzerland. Palaeogeography, Palaeoclimatology, Palaeoecology, 126, 325–341.CrossRefGoogle Scholar
  14. Freivogel, M., & Huggenberger, P. (2003). Modellierung bilanzierter Profile im Gebiet Mont Terri-La Croix (Kanton Jura). In P. Heitzmann, & J.-P. Tripet (Eds.), Mont Terri ProjectGeology, Paleohydrology and stress field of the Mont Terri region (vol. 5). Geology series. Federal Office for Water and Geology (FOWG). http://www.mont-terri.ch.
  15. Hostettler, B., Reisdorf, A. G., Jaeggi, D., Deplazes, G., Bläsi, H.-R., Morard, A., et al. (2017). Litho- and biostratigraphy of the Opalinus Clay and bounding formations in the Mont Terri rock laboratory (Switzerland). Swiss Journal of Geosciences, 110, 22–37.CrossRefGoogle Scholar
  16. Houben, M. E., Desbois, G., & Urai, J. L. (2014). A comparative study of representative 2D microstructures in Shaly and Sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods. Marine and Petroleum Geology, 49, 143–161.CrossRefGoogle Scholar
  17. Jiang, C., Chen, Z., Lavoie, D., Percival, J. B., & Kabanov, P. (2017). Mineral carbon MinC(%) from Rock-Eval analysis as a reliable and cost-effective measurement of carbonate contents in shale source and reservoir rocks. Marine and Petroleum Geology, 83, 184–194.CrossRefGoogle Scholar
  18. Kaufhold, A., Gräsle, W., Plischke, I., Dohrmann, R., & Siegesmund, S. (2013). Influence of carbonate content and micro fabrics on the failure strength of the sandy facies of the Opalinus Clay from Mont Terri (Underground Rock Laboratory). Engineering Geology, 156, 111–118.CrossRefGoogle Scholar
  19. Langford, F. F., & Blanc-Valleron, M.-M. (1990). Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. American Association of Petroleum Geologists Bulletin, 74, 799–804.Google Scholar
  20. Lazar, O. R., Bohacs, K. M., Macquaker, J. H. S., Schieber, J., & Demko, T. M. (2015). Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: nomenclature and description guidelines. Journal of Sedimentary Research, 85, 230–246.CrossRefGoogle Scholar
  21. Lerouge, C., Grangeon, S., Claret, F., Gaucher, E., Blanc, P., Guerrot, C., et al. (2014). Mineralogical and isotopic record of diagenesis from the Opalinus Clay formation at Benken, Switzerland: implications for the modeling of pore-water chemistry in a clay formation. Clays and Clay Minerals, 62, 286–312.CrossRefGoogle Scholar
  22. Macquaker, J. H. S., Taylor, K. G., & Gawthorpe, R. L. (2007). High-resolution facies analyses of mudstones: Implications for paleoenvironmental and sequence stratigraphic interpretations of offshore ancient mud-dominated successions. Journal of Sedimentary Research, 77, 324–339.CrossRefGoogle Scholar
  23. Matter, A., Peters, T., Bläsi, H.-R., Meyer, J., Ischi, H., & Meyer, C. (1988). Sondierbohrung Weiach—Geologie. Nagra Technischer Bericht, NTB 86-01, Nagra, Wettingen, Switzerland. http://www.nagra.ch.
  24. Matter, A., Peters, T., Isenschmid, C., Bläsi, H.-R., & Ziegler, H.-J. (1987). Sondierbohrung Riniken—Geologie. Nagra Technischer Bericht, NTB 86-02, Nagra, Wettingen, Switzerland. http://www.nagra.ch.
  25. Mazurek, M. (2011). Aufbau und Auswertung der Gesteinsparameter—Datenbank für Opalinuston, den Braunen Dogger, Effinger Schichten und Mergel-Formation des Helvetikums. Nagra Arbeitsbericht, NAB 11–20, Nagra, Wettingen, Switzerland. http://www.nagra.ch,
  26. McCarthy, K., Rojas, K., Niemann, M., Palmowski, D., Peters, K., & Stankiewicz, A. (2011). Basic petroleum geochemistry for source rock evaluation. Oilfield Review, 23, 32–43.Google Scholar
  27. Müller, P., & Jaeggi, D. (2012). SO experiment: Sedimentary structure in the sandy facies of the Opalinus Clay at Mont Terri rock laboratory. Mont Terri technical note, TN 2012-45, Federal Office of Topography (swisstopo), Wabern, Switzerland. http://www.mont-terri.ch.
  28. Myrow, P. M. (1992). Pot and gutter casts from the Chapel Island Formation, Southeast Newfoundland. Journal of Sedimentary Petrology, 62, 992–1007.CrossRefGoogle Scholar
  29. Nagra. (2001). Sondierbohrung Benken Untersuchungsbericht. Nagra Technischer Bericht, NTB 00-01, Nagra, Wettingen, Switzerland. http://www.nagra.ch.
  30. Nagra. (2002). Projekt Opalinuston: Synthese der geowissenschaftlichen Untersuchungsergebnisse. Entsorgungsnachweis für abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfälle. Nagra Technischer Bericht, NTB 02-03, Nagra, Wettingen, Switzerland. http://www.nagra.ch
  31. Nussbaum, C., Bossart, P., Amman, F., & Aubourg, C. (2011). Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland). Swiss Journal of Geosciences, 104, 187–210.CrossRefGoogle Scholar
  32. Potter, P. E., Maynard, J. B., & Depetris, P. J. (2005). Mud and mudstones: Introduction and overview. New York: Springer.Google Scholar
  33. Reineck, H.-E., & Wunderlich, F. (1968). Classification and origin of flaser and lenticular bedding. Sedimentology, 11, 99–104.CrossRefGoogle Scholar
  34. Reisdorf, A.G., Hostettler, B., Jaeggi, D., Deplazes, G., Bläsi, H.-R., Morard, A., Feist-Burkhardt, S., Waltschew, A., Dietze, V., & Menkveld-Gfeller, U. (2016). Litho- and biostratigraphy of the 250 m-deep Mont Terri BDB-1 borehole through the Opalinus Clay and bounding formations, St-Ursanne, Switzerland. Mont Terri technical report, TR 2016-02, Federal Office of Topography (swisstopo), Wabern, Switzerland. http://www.mont-terri.ch.
  35. Reisdorf, A.G., Hostettler, B., Waltschew, A., Jaeggi, D., & Menkveld-Gfeller, U. (2014). SO experiment: Biostratigraphy of the basal part of the Opalinus-Ton of the Mont Terri rock laboratory, Switzerland. Mont Terri technical note, TN 2013-111, Federal Office of Topography (swisstopo), Wabern, Switzerland. http://www.mont-terri.ch
  36. Reisdorf, A. G., Wetzel, A., Schlatter, R., & Jordan, P. (2011). The Staffelegg Formation: a new stratigraphic scheme for the Early Jurassic of northern Switzerland. Swiss Journal of Geosciences, 104, 97–146.CrossRefGoogle Scholar
  37. Schieber, J., Southard, J. B., & Schimmelmann, A. (2010). Lenticular shale fabric resulting from intermittent erosion of water-rich muds—Interpreting the rock record in the light of recent flume experiments. Journal of Sedimentary Research, 80, 119–128.CrossRefGoogle Scholar
  38. Schieber, J., Southard, J., & Thaisen, K. (2007). Accretion of mudstone beds from migrating floccule ripples. Science, 318, 1760–1763.CrossRefGoogle Scholar
  39. Selles-Martinez, J. (1994). New insights in the origin of cone-in-cone structures. Carbonates and Evaporites, 9, 172–186.CrossRefGoogle Scholar
  40. Thury, M., & Bosart, P. (1999). The Mont Terri rock laboratory, a new international research project in a Mesozoic shale formation, in Switzerland. Engineering Geology, 52, 347–359.CrossRefGoogle Scholar
  41. Van Loon, L. R., Soler, J. M., Müller, W., & Bradbury, M. H. (2004). Anisotropic diffusion in layered argillaceous rocks: A case study with Opalinus Clay. Environmental Science and Technology, 38, 5721–5728.CrossRefGoogle Scholar
  42. Westermann, G. E. G. (1982). The connecting rings of Nautilus and Mesozoic ammonoids: Implications for ammonoid bathymetry. Lethaia, 15, 373–384.CrossRefGoogle Scholar
  43. Wetzel, A., Allenbach, R., & Allia, V. (2003). Reactivated basement structures affecting the sedimentary facies in a tectonically “quiescent” epicontinental basin: An example from NW Switzerland. Sedimentary Geology, 157, 153–172.CrossRefGoogle Scholar
  44. Wetzel, A., & Allia, V. (2000). The significance of hiatus beds in shallow-water mudstones: An example from the Middle Jurassic of Switzerland. Journal of Sedimentary Research, 70, 170–180.CrossRefGoogle Scholar
  45. Wetzel, A., & Allia, V. (2003). Der Opalinuston in der Nordschweiz: Lithologie und Ablagerungsgeschichte. Eclogae Geologicae Helvetiae, 96, 451–469.Google Scholar
  46. Wetzel, A., & Meyer, C. A. (2006). The dangers of high-rise living on a muddy seafloor: An example of crinoids from shallow-water mudstones (Aalenian, northern Switzerland). Palaios, 21, 155–167.CrossRefGoogle Scholar
  47. Wonik, T. (1996). Geophysikalische Untersuchungen. In Geologisches Landesamt Baden-Württemberg (Eds.), Die Grenzziehung Unter-/Mitteljura (Toarcium/Aalenium) bei Wittnau und Fuentelsaz.Beispiele interdisziplinärer geowissenschaftlicher Zusammenarbeit (14–17). Freiburg i. Br.: Informationen Geologisches Landesamt Baden-Württemberg, 8.Google Scholar
  48. Ziegler, P. A. (1990). Geological atlas of western and central Europe (2nd ed.). London: Shell Internationale Petroleum Mij. B.V. and Geological Society.Google Scholar

Copyright information

© Swiss Geological Society 2018

Authors and Affiliations

  • Bruno Lauper
    • 1
  • David Jaeggi
    • 2
  • Gaudenz Deplazes
    • 3
  • Anneleen Foubert
    • 1
  1. 1.Department of GeosciencesUniversity of FribourgFribourgSwitzerland
  2. 2.Federal Office of Topography swisstopoWabernSwitzerland
  3. 3.National Cooperative for the Disposal of Radioactive Waste (Nagra)WettingenSwitzerland

Personalised recommendations