Swiss Journal of Geosciences

, Volume 111, Issue 1–2, pp 191–204 | Cite as

Knickpoints along the upper Indus River, Pakistan: an exploratory survey of geomorphic processes

  • Muhammad F. Ahmed
  • J. David Rogers
  • Elamin H. Ismail


This article summarizes an exploratory study carried out to investigate the significance of various geomorphic features on the formation of observed knickpoints along the upper Indus River in northern Pakistan. These features include bedrock lithology, active faults, sediment flux from tributary channels, and landslide dams which have blocked the main channel. The knickpoints and their related geomorphic parameters (channel profile, concavity, drainage area and normalized steepness index, etc.) were extracted from Advanced Spaceborne Thermal Emission and Reflection (ASTER) Global Digital Elevation Models (GDEMs) with 30 m resolution using ArcGIS, River Tools, and Matlab software. A total of 251 major and minor knickpoints were extracted from the longitudinal profile along a ~ 750 km reach upstream of Tarbela Reservoir. The identified knickpoints and their respective normalized steepness index (ksn values) were compared with bedrock lithology, mapped faults, regional landslide/rockslide inventory, and the locations of historic landslide dams. The analyses revealed that the knickpoints do not correlate with the bedrock lithology except where major unit boundaries coexist with mapped faults, especially in reaches criss-crossed by active thrust faults in the Nanga Parbat Haramosh (NPHM) region. Neither did the river’s major confluences exhibit any notable knickpoints, but the correlations between knickpoints, mapped landslides, and historic rockslide avalanche dams accounted for approximately 75% of the observed knickpoints, a surprising finding. These observations suggest that more detailed studies aided by high resolution data should be undertaken to further explore the characteristics of knickpoints triggered by tectonic uplift, local fault offset, bedrock erodibility, and landslide/rockslide dams.


Indus River Landslide dam Lithology Knickpoint DEM Longitudinal profile 



The authors are thankful to Natural Hazards Mitigation Institute at the Missouri University of Science and Technology in Rolla, MO, USA, for providing an opportunity to accomplish this work. The authors would also like to thank University of Engineering and Technology, Lahore, Pakistan for financial support to one of the authors to conduct this research.


  1. Ahmad, I., Jan, M. Q., & Dipietro, A. (2003). Age and tectonic implications of granitoid from the Indian Plate of northern Pakistan. Journal of the Virtual Explorer, 11, 21–28.CrossRefGoogle Scholar
  2. Ahmed, M. F., & Rogers, J. D. (2012). Landslide mapping and identification of old landslide dams along the Indus River in Pakistan, using GIS techniques. Association of Environmental and Engineering Geologists 55th annual meeting, Salt Lake City, Utah, Sept. 22–27 (Vol. 55, p. 44).Google Scholar
  3. Ahmed, M. F., & Rogers, J. D. (2013). Thalweg profiles and knickpoints as useful discriminators of prehistoric landslide dams in Northern Pakistan. 125th Annual meeting Geological Society of America, Denver Colorado, Oct 24–28 (Vol. 45, No. 7).Google Scholar
  4. Ahmed, M. F., & Rogers, J. D. (2014). Creating reliable, first-approximation landslide inventory maps using ASTER DEM data and geomorphic indicators, an example from the upper Indus River in northern Pakistan. Journal of Environmental & Engineering Geoscience, 20, 67–83.CrossRefGoogle Scholar
  5. Ahmed, M. F., Rogers, J. D., & Ismail, E. H. (2015). Historic landslide dams along the Upper Indus River, Northern Pakistan. Natural Hazards Review, 16(3), 04014029. Scholar
  6. Borrelli, L., Greco, R., & Gulla, G. (2007). Weathering grade of rock masses as a predisposing factor to slope instabilities: Reconnaissance and control procedures. Geomorphology, 87, 158–175.CrossRefGoogle Scholar
  7. Brush, L. M., & Gordon, W. M. (1960). Knickpoint behavior in noncohesive material: A laboratory study. Geological Society of America Bulletin, 71, 59–73.CrossRefGoogle Scholar
  8. Code, J. A., & Sirhindi, S. (1986). Engineering implications of the impoundment of the Indus River by an earthquake induced landslide. In R. L. Schuster (Ed.), Landslide dams, risk, and mitigation (pp. 97–110). ASCE Geotechnical Special Publication (GSP) 3.Google Scholar
  9. Collins, R. O., & Nash, R. (1978). The big drops: Ten legendary rapids of the American West. San Francisco: Sierra Club Books.Google Scholar
  10. Crosby, B. T., Whipple, K., Gasparini, N. M., & Wobus, C. W. (2007). Formation of fluvial hanging valleys: Theory and simulation. Journal of Geophysical Research, 112, 1–20.CrossRefGoogle Scholar
  11. Cruden, D. M., & Varnes, D. J. (1996). Landslide types and processes. In A. K. Turner, & R. L. Schuster (Eds.), Landslides, investigation and mitigation (pp. 36–75). Special Report 247. Washington, DC: Transportation Research Board.Google Scholar
  12. Dipietro, J. A., Hussain, A., Ahmad, I., & Khan, M. A. (2000). The main mantle thrust in Pakistan: its character and extent. In: M. A. Khan, P. J. Treloar, M. P. Searle, & M. Q. Jan (Eds.), Tectonics of the Nanga Parbat syntaxis and the western Himalaya (pp. 375–393). Geological Society of London Special Publication No. 170.Google Scholar
  13. Doyle, B. C., & Rogers, J. D. (2005). Seismically-induced lateral spread features in the western New Madrid seismic zone. Environmental & Engineering Geoscience, XI(3), 251–258.CrossRefGoogle Scholar
  14. Gani, N. D., Gani, M. R., & Abdelsalam, M. G. (2007). Blue Nile incision on the Ethiopian plateau: Pulsed plateau growth, Pliocene uplift, and hominin evolution. Geological Society America Today, 17, 4–11.Google Scholar
  15. Gannett, H. (1901). Profiles of rivers in the United States: United States Geological Survey Water Supply Paper No. 44.Google Scholar
  16. Glade, T. (2001). Landslide hazard assessment and historical landslide data: an inseparable couple? In T. Glade, P. Albini, & F. Frances (Eds.), The use of historical data in natural hazard assessments (pp. 153–167). Berlin: Springer.CrossRefGoogle Scholar
  17. Hewitt, K. (2002). Styles of rock-avalanche depositional complexes conditioned by very rugged terrain, Karakoram Himalaya, Pakistan. In S. G. Evans & J. V. Degraff (Eds.), Catastrophic landslides: Effects, occurrence, and mechanism (Vol. XV, pp. 345–377)., Reviews in engineering geology Boulder: Geological Society of America.CrossRefGoogle Scholar
  18. Hewitt, K., Gosse, J., & Clague, J. J. (2011). Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya. Geological Society of America Bulletin, 123, 1836–1850.CrossRefGoogle Scholar
  19. Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T., & Whipple, K. (2004). Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth Planet Science Letters, 220, 379–389.CrossRefGoogle Scholar
  20. Ismail, E. H., & Abdelsalam, M. G. (2012). Morpho-tectonic analysis of the Tekeze River and the Blue Nile drainage systems on the Northwestern Plateau, Ethiopia. Journal of African Earth Sciences, 69, 34–47.CrossRefGoogle Scholar
  21. Kazmi, A. H., & Jan, M. Q. (1997). Geology and tectonics of Pakistan. Karachi: Graphic Publishers.Google Scholar
  22. Keller, E. A. (2002). Active tectonics: Earthquakes, uplift, and landscape. Upper Saddle River: Prentice Hall.Google Scholar
  23. Kirby, E. N., Harkins, E., Wang, X., Shi, C., & Fan Burbank, D. (2007). Slip rate gradients along the eastern Kunlun fault. Tectonics, 26, 1–16.CrossRefGoogle Scholar
  24. Kirby, E., & Ouimet, W. (2011). Tectonic geomorphology along the eastern margin of Tibet: Insights into the pattern and processes of active deformation adjacent to the Sichuan Basin. Geological Society Special Publication, 353, 165–188.CrossRefGoogle Scholar
  25. Kirby, E., & Whipple, K. X. (2001). Quantifying differential rock-uplift rates via stream profile analysis. Geology, 29, 415–418.CrossRefGoogle Scholar
  26. Korup, O. (2004). Landslide-induced river channel avulsions in mountain catchments of southwest New Zealand. Geomorphology, 63, 57–80.CrossRefGoogle Scholar
  27. Korup, O., Montgomery, D. R., & Hewitt, K. (2010). Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes. Proceedings of National Academy of Sciences USA, 107, 5317–5322.CrossRefGoogle Scholar
  28. Lee, K. L., & Duncan, J. M. (1975). Landslide of April 25, 1974 on the Mantaro River. Peru/Washington, DC: Report of Inspection/National Academy Press. Scholar
  29. Leland, J., Reid, M. R., Burbank, D. W., Finkel, R., & Caffee, M. (1998). Incision and differential bedrock uplift along the Indus River near Nanga Parbat, Pakistan Himalaya, from 10Be and 26Al exposure age dating of bedrock straths. Earth and Planetary Science Letters, 154, 93–107.CrossRefGoogle Scholar
  30. Leopold, L. B., Wolman, M. G., & Miller, J. P. (1964). Fluvial processes in geomorphology. San Francisco: W.H. Freeman.Google Scholar
  31. Madin, I. P. (1986). Structure and neotectonics of the Northwestern Nanga Parbat-Haramosh Massif. MS thesis, Oregon University, USA.Google Scholar
  32. Montgomery, D. R. (1994). Valley incision and the uplift of mountain peaks. Journal of Geophysical Research, 99, 13913–13921.CrossRefGoogle Scholar
  33. Penck, W. (1927). Die morphologische Analyse (“Morphological analysis of landforms”): Stuttgart (English translation in 1953 by H. Czech & K. C. Boswell). London: Macmillan.Google Scholar
  34. Rabin, M., Sue, C., Valla, P. G., Champagnac, J. D., Carry, N., Bichet, V., et al. (2015). Deciphering neotectonics from river profile analysis in the karst Jura Mountains (northern Alpine foreland). Swiss Journal of Geosciences, 108, 401–424.CrossRefGoogle Scholar
  35. Rogers, J. D. (1994). Report accompanying map of landslides and other surficial deposits of the city of Orinda (p. 141). CA: Rogers/Pacific, Inc. for the City of Orinda Public Works Department.Google Scholar
  36. Schoenbohm, L. M., Whipple, K. X., Burchfiel, B. C., & Chen, L. (2004). Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China. Geological Society of America Bulletin, 116(7), 895–909.CrossRefGoogle Scholar
  37. Schumm, S. A. (1977). The Fluvial System. New York: Wiley.Google Scholar
  38. Seidl, M. A., & Dietrich, W. E. (1994). Longitudinal profile development into bedrock: An analysis of Hawaiian channels. Journal of Geology, 102, 457–474.CrossRefGoogle Scholar
  39. Shehzad, F., Mahmood, S. A., & Gloaguen, R. (2009). Drainage network and seismological analysis of active tectonics in the Nanga Parbat Haramosh Massif, Pakistan. In IEEE geosciences and remote sensing symposium, July 12–17 (pp. 9–12).Google Scholar
  40. Shroder, J. F., & Jr, Bishop. (1998). Mass movement in the Himalaya: New insights and research directions. Geomorphology, 26, 13–35.CrossRefGoogle Scholar
  41. Sklar, L., & Dietrich, W. E. (2001). Sediment and rock strength controls on river incision into bedrock. Geology, 29(12), 1087–1090.CrossRefGoogle Scholar
  42. Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D., Oimoen, M., Zhang, Z., Danielson, J., Krieger, T., Curtis, B., Haase, J., Abrams, M., Crippen, R., & Carabajal, C. (2011). ASTER global digital elevation model version 2—Summary of validation results (pp. 15–24). Report to the ASTER GDEM Validation Team.Google Scholar
  43. Tahirkheli, R. A. K., Mattauer, N., Proust, F., & Tapponier, P. (1979). The India–Eurasia suture zone in northern Pakistan: Synthesis and interpretation of recent data at plate scale. In A. Farah & K. A. De Jong (Eds.), Geodynamics of Pakistan (pp. 125–130). Quetta: Geological Survey of Pakistan.Google Scholar
  44. Walsh, L. S., Martin, A. J., Ojha, T. P., & Fedenczuk, T. (2012). Correlations of fluvial knickzones with landslide dams, lithologic contacts, and faults in the southwestern Annapurna Range, central Nepalese Himalaya. Journal of Geophysical Research, 117, 1–24.Google Scholar
  45. Whipple, K. X. (2004). Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth and Planetary Sciences, 32, 151–185.CrossRefGoogle Scholar
  46. Whipple, K. X., Hancock, G. S., & Anderson, R. S. (2000). River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation. Geological Society of America Bulletin, 112, 490–503.CrossRefGoogle Scholar
  47. Whipple, K. X., & Tucker, G. E. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research, 104, 17661–17674.CrossRefGoogle Scholar
  48. Wills, C. J., & McCrink, T. P. (2002). Comparing landslide inventories: The map depends on the method. Environmental and Engineering Geoscience, 8, 4279–4293.CrossRefGoogle Scholar
  49. Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., & Sheehan, D. (2006). Tectonics form topography: Procedures, promise, and pitfalls (pp. 55–74). GSA Special Paper 398, Penrose Conference Series.Google Scholar
  50. Zeitler, P. K., Johnson, N. M., Waeser, G. W., & Tahirkheli, R. A. K. (1982). Fission-track evidence for Quaternary uplift of the Nanga Parbat region, Pakistan. Nature, 298, 255–257.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2017

Authors and Affiliations

  • Muhammad F. Ahmed
    • 1
  • J. David Rogers
    • 2
  • Elamin H. Ismail
    • 2
  1. 1.Department of Geological EngineeringUniversity of Engineering and TechnologyLahorePakistan
  2. 2.Department of Geosciences and Geological and Petroleum EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations