Advertisement

Swiss Journal of Geosciences

, Volume 111, Issue 1–2, pp 35–49 | Cite as

The Morcles microgranite (Aiguilles Rouges, Swiss Alps): geochronological and geochemical evidences for a common origin with the Vallorcine intrusion

  • Denise Bussien Grosjean
  • Nicolas Meisser
  • Sylvie May-Leresche
  • Alexey Ulianov
  • Pierre Vonlanthen
Article
  • 190 Downloads

Abstract

The Morcles microgranite is located in the N–E termination of the Aiguilles Rouges massif (External Crystalline Massifs, Switzerland). It outcrops as dykes, a few meters to 150 m in thickness, intruding the Aiguilles Rouges polymetamorphic basement, and presents variation of texture from granophyric to rhyolitic. We present here for the first time, in situ U–Pb zircon dating of the Morcles microgranite/rhyolite based on laser-ablation—inductively coupled plasma—mass spectrometry (LA-ICP-MS) data. Results indicate late Variscan emplacement ages at ~303 and ~309–312 Ma, a major Caledonian inherited component age at ~445–460 Ma, and secondary inherited ages ranging from Pan-African (550–1000 Ma) to Paleoproterozoic (2.3 Ga). Geochronological and geochemical data indicate that the Morcles microgranite/rhyolite shares a common origin with the higher (or “H”) facies of the neighbouring Vallorcine granitic intrusion. This close affinity is further corroborated by the geographical alignment of both intrusive bodies on either side of the Rhone Valley. The fine-grained texture of the microgranite groundmass and the rhyolite indicates a very rapid cooling rate and emplacement close to the surface, suggesting that the Morcles microgranite/rhyolite may constitute the shallow-level counterpart of the Vallorcine granite. The mineralogical assemblages observed in the Morcles microgranite/rhyolite support the idea of high-temperature melting conditions provided by underplating of mantle-derived magmas during the Carboniferous extension of the Variscan cordillera.

Keywords

Zircon U–Pb dating Aiguilles Rouges massif Vallorcine intrusion Late-Variscan magmatism 

Notes

Acknowledgements

The authors would like to dedicate this article to S. Ayrton (†) who drew our intention to the Morcles microgranite already back in 1990. The XRF results were obtained thanks to the collaborators of the Centre d’Analyse Minérale (CAM) of the University of Lausanne (Switzerland), in particular J.-C. Lavanchy and H.-R. Pfeifer whose help is gratefully acknowledged. We also thank F. Bussy for the many helpful discussions and advices, as well as G. Borel and O. Müntener for administrative support and laboratory access. Finally, we are very grateful to J. F. von Raumer, and an anonymous reviewer for their constructive remarks and suggestions.

Supplementary material

15_2017_282_MOESM1_ESM.xlsx (28 kb)
Supplementary material 1 (XLSX 28 kb)

References

  1. Barbarin, B. (1996). Genesis of the two main types of peraluminous granitoids. Geology, 24, 295–298.CrossRefGoogle Scholar
  2. Bertrand, J.-M., Pidgeon, R. T., Leterrier, J., Guillot, F., Gasquet, D., & Gattiglio, M. (2000). SHRIMP and IDTIMS U-Pb zircon ages of the pre-Alpine basement in the Internal Western Alps (Savoy and Piemont). Schweizerische Mineralogische und Petrographische Mitteilungen, 80, 225–248.Google Scholar
  3. Boutoux, A., Bellahsen, N., Nanni, U., Pik, R., Verlaguet, A., Rolland, Y., et al. (2016). Thermal and structural evolution of the external Western Alps: insights from (U-Th-Sm)/He thermochronology and RSCM thermometry in the Aiguilles Rouges/Mont Blanc massifs. Tectonophysics, 683, 109–123.CrossRefGoogle Scholar
  4. Boynton, W.V. (1984). Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (Ed.), Developments in geochemistry (pp. 63–114). Amsterdam: Elsevier.Google Scholar
  5. Bradley, D. C. (2011). Secular trends in the geologic record and the supercontinent cycle. Earth-Science Reviews, 108, 16–33.CrossRefGoogle Scholar
  6. Brändlein, P. (1991). Petrographische und geochemische Charakteristika des Vallorcine-Granits, Aiguilles-Rouges-Massiv (Westalpen, Schweiz). Ph.D. Thesis, Erlangen-Nuernberg University, Erlangen, Germany, p. 99.Google Scholar
  7. Brändlein, P., Nollau, G., Sharp, Z., & von Raumer, J. F. (1994). Petrography and geochemistry of the Vallorcine granite (Aiguilles Rouges massif, Western Alps). Schweizerische Mineralogische und Petrographische Mitteilungen, 74, 227–243.Google Scholar
  8. Bussien, D., Bussy, F., Magna, T., & Masson, H. (2011). Timing of Palaeozoic magmatism in the Maggia and Sambuco nappes and paleogeographic implications (Central Lepontine Alps). Swiss Journal of Geosciences, 104, 1–29.CrossRefGoogle Scholar
  9. Bussy, F., Hernandez, J., & von Raumer, J. F. (2000). Bimodal magmatism as a consequence of the post-collisional readjustment of the thickened Variscan continental lithosphere (Aiguilles Rouges-Mont Blanc Massifs, Western Alps). Transactions of the Royal Society of Edinburgh: Earth Sciences, 91, 221–233.CrossRefGoogle Scholar
  10. Bussy, F., Péronnet, V., Ulianov, A., Epard, J.-L., & Von Raumer, J. F. (2011). Ordovician magmatism in the external French Alps: witness of a peri-gondwanan active continental margin. In J. C. Gutierrez-Marco, I. Rabano, & D. Garcia-Bellido (Eds.), Ordovician of the world (pp. 75–82). Madrid: Instituto Geológico y Minero de España.Google Scholar
  11. Bussy, F., & von Raumer, J. F. (1993). U-Pb dating of Palaeozoic events in the Mont Blanc crystalline massif, Western Alps. In European Geosciences (Ed.), Union (pp. 382–383). Strasbourg: Terra Abstracts.Google Scholar
  12. Bussy, F., & von Raumer, J.F. (1994). U-Pb geochronology of Palaeozoic magmatic events in the Mont-Blanc crystalline massif, Western Alps. In Symposium basement-cover relationships in the Alps (pp. 514-515).Google Scholar
  13. Capuzzo, N., & Bussy, F. (2000). High-precision dating and origin of synsedimentary volcanism in the Late Carboniferous Salvan-Dorénaz basin (Aiguilles-Rouges Massif, Western Alps). Schweizerische Mineralogische und Petrographische Mitteilungen, 80, 147–167.Google Scholar
  14. Capuzzo, N., & Wetzel, A. (2004). Facies and basin architecture of the Late Carboniferous Salvan-Dorénaz continental basin (Western Alps, Switzerland/France). Sedimentology, 51, 675–697.CrossRefGoogle Scholar
  15. Cas, R. A. F., & Wright, J. V. (1987). Volcanic successions. Modern and Ancient (p. 528). London: Chapman & Hall.CrossRefGoogle Scholar
  16. Collet, L.W., Lombard, A., Oulianoff, N., Paréjas, E., Reinhard, M. (1951). 24 Barberine. In Atlas géologique de la Suisse (p. avec notice explicative). Office fédéral des eaux et de la géologie.Google Scholar
  17. Corsini, M., & Rolland, Y. (2009). Late evolution of the southern European Variscan belt: exhumation of the lower crust in a context of oblique convergence. Comptes Rendus Geoscience, 341, 214–223.CrossRefGoogle Scholar
  18. Dobmeier, C. (1996). Geodynamische Entwicklung des südwestlichen Aiguilles-Rouges-Massivs (Westalpen, Frankreich). Mémoires de Géologie (Lausanne), 29, 191.Google Scholar
  19. Dobmeier, C., Pfeifer, H. R., & von Raumer, J. F. (1999). The newly defined “Greenstone Unit” of the Aiguilles Rouges massif (western Alps): remnant of an Early Palaeozoic oceanic island-arc? Schweizerische Mineralogische und Petrographische Mitteilungen, 79, 263–276.Google Scholar
  20. Egli, D., & Mancktelow, N. (2013). The structural history of the Mont Blanc massif with regard to models for its recent exhumation. Swiss Journal of Geosciences, 106, 469–489.CrossRefGoogle Scholar
  21. Egli, D., Mancktelow, N., & Spikings, R. (2017). Constraints from 40Ar/39Ar geochronology on the timing of Alpine shear zones in the Mont Blanc—Aiguilles Rouges region of the European Alps. Tectonics, 36, 1–19.CrossRefGoogle Scholar
  22. Faure, M., Lardeaux, J.-M., & Ledru, P. (2009). A review of the pre-Permian geology of the Variscan French Massif Central. Comptes Rendus Geoscience, 341, 202–213.CrossRefGoogle Scholar
  23. Faure, M., Leloix, C., & Roig, J.-Y. (1997). L’évolution polycyclique de la chaîne hercynienne. Bulletin de la Societe Geologique de France, 168, 695–705.Google Scholar
  24. Franke, W., Cocks, L. R. M., & Torsvik, T. H. (2017). The Palaeozoic Variscan oceans revisited. Gondwana Research, 48, 257–284.CrossRefGoogle Scholar
  25. Gebauer, D. (1993). The pre-Alpine evolution of the continental crust of the Central Alps - an overview. In J. F. von Raumer & F. Neubauer (Eds.), Pre-Mesozoic geology in the Alps (pp. 93–117). Berlin: Springer.CrossRefGoogle Scholar
  26. Gretter, N., Ronchi, A., Langone, A., & Perotti, C. R. (2013). The transition between the two major Permian tectono-stratigraphic cycles in the central Southern Alps: results from facies analysis and U/Pb geochronology. International Journal of Earth Sciences, 102, 1181–1202.CrossRefGoogle Scholar
  27. Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J., & O’Reilly, S. Y. (2004). Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 131, 231–282.CrossRefGoogle Scholar
  28. Guillot, S., & Ménot, R.-P. (2009). Paleozoic evolution of the External Crystalline Massifs of the Western Alps. Comptes Rendus Geoscience, 341, 253–265.CrossRefGoogle Scholar
  29. Guillot, F., Schaltegger, U., Bertrand, J.-M., Deloule, É., & Baudin, T. (2002). Zircon U–Pb geochronology of Ordovician magmatism in the polycyclic Ruitor Massif (Internal W Alps). International Journal of Earth Sciences, 91, 964–978.CrossRefGoogle Scholar
  30. Jackson, S.E. (2008). LAMTRACE data reduction software for LA-ICP-MS. In Laser ablation ICP-MS in the Earth sciences: Current practices and outstanding issues. (pp. 305-307). Mineralogical Association of Canada.Google Scholar
  31. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211, 47–69.CrossRefGoogle Scholar
  32. Laurent, O., Couzinié, S., Zeh, A., Vanderhaeghe, O., Moyen, J.-F., Villaros, A., et al. (2017). Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U–Pb dating in the eastern French Massif Central. International Journal of Earth Sciences, 106, 421–451.CrossRefGoogle Scholar
  33. Leresche, S. (1992). Pétrographie et géochimie des microgranites des Monts de Collonges et des roches associées. Unpublished Diploma thesis, Université de Lausanne, Switzerland, Lausanne, Switzerland, p. 96.Google Scholar
  34. Ludwig, K. R. (2012). User’s manual for Isoplot 3.75, A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 5, 1–75.Google Scholar
  35. Martínez Catalán, J. R., Fernández-Suárez, J., Meireles, C., González Clavijio, E., Belousova, E. A., & Saeed, A. (2008). U–Pb detrital zircon ages in synorogenic deposits of the NW Iberian Massif (Variscan belt): interplay of Devonian-Carboniferous sedimentation and thrust tectonics. Journal of the Geological Society, 165, 687–698.CrossRefGoogle Scholar
  36. Matte, P. (2001). The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova, 13, 122–128.CrossRefGoogle Scholar
  37. Meisser, N. (2003). La minéralogie de l’uranium dans le massif des Aiguilles Rouges (Alpes occidentales). PhD thesis, Université de Lausanne, Switzerland, 255 p.Google Scholar
  38. Meisser, N. (2012). La minéralogie de l’uranium dans le massif des Aiguilles Rouges (1 carte + 183 p.). Matériaux pour la Géologie de la Suisse, Série Géotechnique: Office fédéral de la topographie (Swisstopo), Switzerland.Google Scholar
  39. Mollex, D. (2003). Le magmatisme basique Carbonifère dans le massif des Aiguilles Rouges. Unpublished post-grade thesis, Université de Lausanne, Switzerland, Switzerland, 123 p.Google Scholar
  40. Morard, A., & von Raumer, J.F. (2005). Massif du Mont Blanc et des Aiguilles Rouges-Carte géologique du socle cristallin sans couverture quaternaire. Association des Réserves Naturelles des Aiguilles Rouges, http://www.rnaiguillesrouges.org/geologie.html. Accessed 9 Sept 2017.
  41. Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38, 757–775.CrossRefGoogle Scholar
  42. Olsen, S. N., Johnson, C. M., Beard, B. L., & Baumgartner, L. P. (2000). New U–Pb zircon data and constraints on the age and mode of migmatization in the Aar massif, Central Alps. European Journal of Mineralogy, 12, 1245–1260.CrossRefGoogle Scholar
  43. Pilloud, C. (1991). Structures de déformation alpines dans le synclinal de Permo-Carbonifère de Salvan-Dorénaz (massif des Aiguilles Rouges, Valais) (p. 105). Lausanne: Université de Lausanne.Google Scholar
  44. Pupin, J.-P. (1980). Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73, 207–220.CrossRefGoogle Scholar
  45. Rey, P. F., Burg, J.-P., & Casey, M. (1997). The Scandinavian Caledonides and their relationship to the Variscan belt. Geological Society, London, Special Publications, 121, 179–200.CrossRefGoogle Scholar
  46. Rino, S., Kon, Y., Sato, W., Maruyama, S., Santosh, M., & Zhao, D. (2008). The Grenvillian and Pan-African orogens: world’s largest orogenies through geologic time, and their implications on the origin of superplume. Gondwana Research, 14, 51–72.CrossRefGoogle Scholar
  47. Rolland, Y., Corsini, M., & Demoux, A. (2009). Metamorphic and structural evolution of the Maures-Tanneron massif (SE Variscan chain): evidence of doming along a transpressional margin. Bulletin de la Societe Geologique de France, 180, 217–230.CrossRefGoogle Scholar
  48. Rolland, Y., Rossi, M., Cox, S. F., Corsini, M., Mancktelow, N., Pennacchioni, G., et al. (2008). 40Ar/39Ar dating of synkinematic white mica: insights from fluid-rock reaction in low-grade shear zones (Mont Blanc Massif) and constraints on timing of deformation in the NW external Alps. Geological Society, London, Special Publications, 299, 293–315.CrossRefGoogle Scholar
  49. Schaltegger, U. (1993). The evolution of the polymetamorphic basement in the Central Alps unravelled by precise U–Pb zircon dating. Contributions to Mineralogy and Petrology, 113, 466–478.CrossRefGoogle Scholar
  50. Schaltegger, U., Abrecht, J., & Corfu, F. (2003). The Ordovician orogeny in the Alpine basement: constraints from geochronology and geochemistry in the Aar Massif (Central Alps). Schweizerische Mineralogische und Petrographische Mitteilungen, 83, 183–195.Google Scholar
  51. Schaltegger, U., & Brack, P. (2007). Crustal-scale magmatic systems during intracontinental strike-slip tectonics: U, Pb and Hf isotopic constraints from Permian magmatic rocks of the Southern Alps. International Journal of Earth Sciences, 96, 1131–1151.CrossRefGoogle Scholar
  52. Schaltegger, U., & Gebauer, D. (1999). Pre-Alpine geochronology of the Central, Western and Southern Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 79, 79–87.Google Scholar
  53. Scheiber, T., Berndt, J., Mezger, K., & Pfiffner, O. A. (2014). Precambrian to Paleozoic zircon record in the Siviez-Mischabel basement (western Swiss Alps). Swiss Journal of Geosciences. doi: 10.1007/s00015-013-0156-2.Google Scholar
  54. Schuster, R., Scharbert, S., Abart, R., & Frank, W. (2001). Permo-Triassic extension and related HT/LP metamorphism in the Austroalpine - Southalpine realm. Mitteilungen der Gesellschaft für Geologische Bergbaustudien in Österreich, 45, 111–141.Google Scholar
  55. Sláma, J., Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., et al. (2008). Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1–35.CrossRefGoogle Scholar
  56. Stampfli, G. M., Hochard, C., Vérard, C., Wilhem, C., & von Raumer, J. F. (2013). The formation of Pangea. Tectonophysics, 593, 1–19.CrossRefGoogle Scholar
  57. Stampfli, G. M., von Raumer, J., & Wilhem, C. (2011). The distribution of Gondwana-derived terranes in the Early Paleozoic. In J. C. Gutierrez-Marco, I. Rabano, & D. Garcia-Bellido (Eds.), Ordovician of the world (pp. 567–574). Madrid: Instituto Geológico y Minero de España.Google Scholar
  58. Ulianov, A., Muntener, O., Schaltegger, U., & Bussy, F. (2012). The data treatment dependent variability of U–Pb zircon ages obtained using mono-collector, sector field, laser ablation ICPMS. Journal of Analytical Atomic Spectrometry, 27, 663–676.CrossRefGoogle Scholar
  59. Veevers, J. J. (2004). Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth-Science Reviews, 68, 1–132.CrossRefGoogle Scholar
  60. von Raumer, J. F. (1969). Stilpnomelan als alpinmetamorphes Produkt im Mont-Blanc-Granit. Contributions to Mineralogy and Petrology, 21, 257–271.CrossRefGoogle Scholar
  61. von Raumer, J. F. (1998). The Palaeozoic evolution in the Alps: from Gondwana to Pangea. Geologisches Rundschau, 87, 407–435.CrossRefGoogle Scholar
  62. von Raumer, J. F., Abrecht, J., Bussy, F., Lombardo, B., Ménot, R.-P., & Schaltegger, U. (1999). The Palaeozoic metamorphic evolution of the Alpine External Massifs. Schweizerische Mineralogische und Petrographische Mitteilungen, 79, 5–22.Google Scholar
  63. von Raumer, J. F., & Bussy, F. (2004). Mont Blanc and Aiguilles Rouges—Geology of their polymetamorphic basement (External Massifs, Western Alps, France-Switzerland). Mémoires de Géologie (Lausanne), 42, 203.Google Scholar
  64. von Raumer, J. F., Bussy, F., Schaltegger, U., Schulz, B., & Stampfli, G. M. (2013). Pre-Mesozoic Alpine basements—their place in the European Paleozoic framework. Geological Society of America Bulletin, 125, 89–108.CrossRefGoogle Scholar
  65. von Raumer, J. F., Bussy, F., & Stampfli, G. M. (2009). The Variscan evolution in the External massifs of the Alps and place in their Variscan framework. Comptes Rendus Geoscience, 341, 239–252.CrossRefGoogle Scholar
  66. Von Raumer, J. F., Stampfli, G. M., Borel, G. D., & Bussy, F. (2002). Organisation of pre-Variscan basement areas at the north-Gondwanan margin. International Journal of Earth Sciences, 91, 35–52.CrossRefGoogle Scholar
  67. von Tscharner, M., Schmalholz, S. M., & Epard, J. L. (2016). 3-D numerical models of viscous flow applied to fold nappes and the Rawil depression in the Helvetic nappe system (western Switzerland). Journal of Structural Geology, 86, 32–46.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2017

Authors and Affiliations

  1. 1.Musée Cantonal de GéologieUNIL-AnthropoleLausanneSwitzerland
  2. 2.Chemin de Sur VilleBussy-ChardonneySwitzerland
  3. 3.Institut des Sciences de la TerreUNIL-GéopolisLausanneSwitzerland

Personalised recommendations