Advertisement

Swiss Journal of Geosciences

, Volume 110, Issue 1, pp 105–128 | Cite as

Geochemical signature of paleofluids in microstructures from Main Fault in the Opalinus Clay of the Mont Terri rock laboratory, Switzerland

  • Norbert ClauerEmail author
  • Isabelle Techer
  • Christophe Nussbaum
  • Ben Laurich
Article

Abstract

The present study reports on elemental and Sr isotopic analyses of calcite and associated celestite infillings of various microtectonic features collected mostly in the Main Fault of the Opalinus Clay from Mont Terri rock laboratory. Based on a detailed microstructural description of veins, slickensides, scaly clay aggregates and gouges, the geochemical signatures of the infillings were compared to those of the leachates from undeformed Opalinus Clay, and to the calcite from veins crosscutting Hauptrogenstein, Passwang and Staffelegg Formations above and below the Opalinus Clay. Vein calcite and celestite from Main Fault yield identical 87Sr/86Sr ratios that are also close to those recorded in the Opalinus Clay matrix inside the Main Fault, but different from those of the diffuse Opalinus Clay calcite outside the fault. These varied 87Sr/86Sr ratios of the diffuse calcite evidence a lack of interaction among the associated connate waters and the flowing fluids characterized by a homogeneous Sr signature. The 87Sr/86Sr homogeneity at 0.70774 ± 0.00001 (2σ) for the infillings of most microstructures in the Main Fault, as well as of veins from nearby limestone layer and sediments around the Opalinus Clay, claims for an “infinite” homogeneous marine supply, whereas the gouge infillings apparently interacted with a fluid chemically more complex. According to the known regional paleogeographic evolution, two seawater supplies were inferred and documented in the Delémont Basin: either during the Priabonian (38–34 Ma ago) from western Bresse graben, and/or during the Rupelian (34–28 Ma ago) from northern Rhine Graben. The Rupelian seawater that yields a mean 87Sr/86Sr signature significantly higher than those of the microstructural infillings seems not to be the appropriate source. Alternatively, Priabonian seawater yields a mean 87Sr/86Sr ratio precisely matching that of the leachates from diffuse calcite of the Opalinus Clay inside the Main Fault, as well as that of its microstructures and the same features of the sediments above and below. To envision a Priabonian seawater supply, there is a need for its storage without a significant evolution in its Sr isotopic composition until the final deformation of the area. The paleo-hydrogeological context calls for a possible infiltration of the seawater into a limestone karst located above the Opalinus Clay that could have acted as the storage reservoir. The karstic nature of this reservoir also explains why the 87Sr/86Sr of the fluids was not modified significantly until expulsion. An alternative storage could have been provided by the regional faulting system that developed during the contemporary regional rifting of the Rhine Graben. The fluid expulsion started along these extensional faults during the further Upper Eocene–Lower Oligocene rifting phase. Later, the thin-skinned deformation of the Jura Belt affected the Mont Terri region in the form of the Main Fault, probably between approximately 9 and 4 Ma on the basis of preliminary K–Ar ages of nanometer-sized authigenic illite crystals recovered from gouge samples.

Keywords

Microtectonic features Calcite infillings Elemental and 87Sr/86Sr geochemistry Regional geological evolution Fluid diffusion vs. fluid flow Past seawater vs. present-day free water 

Notes

Acknowledgements

We are especially thankful to Pierre De Cannière (FANC-AFCN) and Claudius Pirkenseer (Paléontologie A16 and University of Fribourg) for their extremely detailed, constructive and improving reviews, to Paul Bossart (Mont Terri Consortium and swisstopo) for support and funding of the FI Experiment, and to Andreas Gautschi (Nagra) for his continuous interest and support for this research project. Special thanks are also due to Agnès Vinsot (Andra) who made available to us a pore-water sample and the dataset of those she studies in the frame of the HT Experiment. Sincere thanks are also due to Roy Freeman for his efforts to improve the English presentation.

References

  1. Agar, S. M., Prior, D. J., & Behrmann, J. H. (1989). Back-scattered electron imagery of the tectonic fabrics of some fine-grained sediments: Implications for fabric nomenclature and deformation processes. Geology, 17, 901–904.CrossRefGoogle Scholar
  2. Arch, J., Maltman, A. J., & Knipe, R. J. (1988). Shear-zone geometries in experimentally deformed clays: The influence of water content, strain rate and primary fabric. Journal of Structural Geology, 10, 91–99.CrossRefGoogle Scholar
  3. Berger, J. P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K., Picot, L., et al. (2005a). Paleogeography of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene. International Journal of Earth Sciences, 94, 697–710.CrossRefGoogle Scholar
  4. Berger, J. P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K., Picot, L., et al. (2005b). Eocene-Pliocene time scale and stratigraphy of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB). International Journal of Earth Sciences, 94, 711–731.CrossRefGoogle Scholar
  5. Blaise, T., Clauer, N., Cathelineau, M., Boiron, M. C., Techer, I., & Boulvais, P. (2015). Reconstructing fluid-flow events in Lower-Triassic sandstones of the eastern Paris Basin by elemental tracing and isotopic dating of nanometric illite crystals. Geochimica et Cosmochimica Acta, 176, 157–184.CrossRefGoogle Scholar
  6. Boger, P., & Faure, G. (1974). Strontium-isotope stratigraphy of a Red Sea core. Geology, 2, 181–183.CrossRefGoogle Scholar
  7. Bossart, P., Bernier, F., Birkholzer, J., Bruggeman, C., Connolli, P., Dewonck, S., Fukaya, M., Herfort, M., Jensen, M., Matray, J-M., Mayor, J. C., Moeri, A., Oyama, T., Schuster, K., Shigeta, N., Vietor, T., & Wieczorek, K. (2017). Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments. Swiss Journal of Geosciences, 110. doi: 10.1007/s00015-016-0236-1 (this issue).
  8. Bossart, P., & Wermeille, S. (2003). Paleohydrological study of the surroundings of the Mont Terri Rock Laboratory. In P. Heitzmann, J.P. Tripet (Eds.), Mont Terri ProjectGeology, Paleohydrology and Stress Field of the Mont Terri Region (pp. 45–64). Wabern, Switzerland: Reports of the Swiss Geological Survey Federal Office of Topography (swisstopo). http://www.mont-terri.ch.
  9. Braillard, L. (2006). Morphogenèse des vallées sèches du Jura tabulaire d’Ajoie (Suisse): rôle de la fracturation et étude des remplissages quaternaires. Ph.D. dissertation, University of Fribourg, Switzerland.Google Scholar
  10. Buatier, M. D., Chauvet, A., Kanitpanyacharoen, W., Wenk, H. R., Ritz, J. F., & Jolivet, M. (2012). Origin and behavior of clay minerals in the Bogd fault gouge, Mongolia. Journal of Structural Geology, 34, 77–90.CrossRefGoogle Scholar
  11. Bundesamt für Energie (2008). Sachplan geologische Tiefenlager: Konzeptteil. Bern, Schweiz: Bundesamt für Energie BFE. http://www.bfe.admin.ch.
  12. Burley, S. D., & Worden, R. (2003). Sandstone diagenesis: Recent and ancient. Reprint series of the International Association of Sedimentologists (p. 656). New York: Wiley.CrossRefGoogle Scholar
  13. Cathelineau, M., Boiron, M. C., Fourcade, S., Ruffet, G., Clauer, N., Belcourt, O., et al. (2012). A major Late Jurassic fluid event at the basin/basement unconformity in western France: 40Ar/39Ar and K–Ar dating, fluid chemistry, and related geodynamic context. Chemical Geology, 322, 99–120.CrossRefGoogle Scholar
  14. Clauer, N., Chaudhuri, S., Kralik, M., & Bonnot-Courtois, C. (1993). Effects of experimental leaching on Rb–Sr and K–Ar isotopic systems and REE contents of diagenetic illite. Chemical Geology, 103, 1–16.CrossRefGoogle Scholar
  15. Clauer, N., Fallick, A. E., Eberl, D. D., Honty, M., Huff, W., & Aubert, A. (2013). K–Ar dating and δ18O-δD characterization of nanometric illite from Ordovician K-bentonites of the Appalachians: Illitization and the Acadian-Alleghenian tectonic activity. American Mineralogist, 98, 2144–2154.CrossRefGoogle Scholar
  16. Clauer, N., Hoffert, M., Grimaud, D., & Millot, G. (1975). Composition isotopique du strontium d’eaux interstitielles extraites de sédiments récents: un argument en faveur de l’homogénéisation isotopique des minéraux argileux. Geochimica et Cosmochimica Acta, 39, 1579–1582.CrossRefGoogle Scholar
  17. Clauer, N., Rousset, D., & Środoń, J. (2004). Modeled shale and sandstone burial diagenesis based on the K–Ar systematics of illite-type fundamental particles. Clays and Clay Minerals, 52, 576–588.CrossRefGoogle Scholar
  18. Clauer, N., Środoń, J., Francú, J., & Šucha, V. (1997). K–Ar dating of illite fundamental particles separated from illite/smectite. Clay Minerals, 32, 181–196.CrossRefGoogle Scholar
  19. de Haller, A., Mazurek, M., Spangenberg, J., & Möri, A. (2014). Self-sealing of faults (SF) project: Final report. Mont Terri Technical Report, TR 08-02. Wabern, Switzerland: Federal Office of Topography (swisstopo). http://www.mont-terri.ch.
  20. Degueldre, C., Scholtis, A., Thomas, B. (1998). WS-A experiment: Opalinus Clay groundwaters and colloids. A sampling and analysis exercise at Mont Terri (June/July 1997). Analytical results. Mont Terri Technical Note, TN 1997-20. Wabern, Switzerland: Federal Office of Topography (swisstopo). http://www.mont-terri.ch.
  21. Dehandschutter, B., Vandycke, S., Sintubin, M., Vandenberghe, N., & Wouters, L. (2005). Brittle fractures and ductile shear bands in argillaceous sediments: Inferences from Oligocene Boom Clay (Belgium). Journal of Structural Geology, 27, 1095–1112.CrossRefGoogle Scholar
  22. Eiichi, I. (2012). Microstructure and origin of faults in siliceous mudstone at the Horonobe Underground Research Laboratory site, Japan. Journal of Structural Geology, 34, 20–29.CrossRefGoogle Scholar
  23. Faure, G. (1986). Principles of isotope geology (2nd ed., p. 608). New York: Wiley.Google Scholar
  24. Haines, S. H., Kaproth, B., Marone, C., Saffer, D., & van der Pluijm, B. (2013). Shear zones in clay-rich fault gouge: A laboratory study of fabric development and evolution. Journal of Structural Geology, 51, 206–225.CrossRefGoogle Scholar
  25. Hinsken, S., Ustaszewski, K., & Wetzel, A. (2007). Graben with controlling syn-rift sedimentation: The Paleogene southern Rhine Graben as an example. International Journal of Earth Sciences, 96, 979–1002.CrossRefGoogle Scholar
  26. Hoth, P., Wirth, H., Reinhold, K., Bräuer, V., Krull, P., Feldrappe H. (2007). Einlagerung radioaktiver Abfälle in tiefen geologischen Formationen Deutschlands—Untersuchung und Bewertung von Tongesteinsformationen. Hannover, Germany: Bundesanstalt für Geowissenschaften und Rohstoffe (BGR).Google Scholar
  27. Houben, M. E., Desbois, G., & Urai, J. L. (2013). Pore morphology and distribution in the Shaly facies of Opalinus Clay (Mont Terri, Switzerland): Insights from representative 2D BIB–SEM investigations on mm to nm scale. Applied Clay Science, 71, 82–97.CrossRefGoogle Scholar
  28. Houben, M. E., Desbois, G., & Urai, J. L. (2014). A comparative study of representative 2D microstructures in shaly and sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred from BIB-SEM and MIP methods. Marine and Petroleum Geology, 49, 143–161.CrossRefGoogle Scholar
  29. Jaeggi, D., Laurich, B., Nussbaum, C., Schuster, K., Connolly, P. (2017). Tectonic structure of the “Main Fault” in the Opalinus Clay, Mont Terri rock laboratory (Switzerland). Swiss Journal of Geosciences, 110. doi: 10.1007/s00015-016-0243-2 (this issue).
  30. Labaume, P., Maltman, A.J., Bolton, A., Tessier, D., Ogawa, Y., Takizawa, S. (1997). Scaly fabrics in sheared clays from the décollement zone of the Barbados accretionary prism. In Proceedings of the ocean drilling program. Scientific results (pp. 59–77). Ocean Drilling Program.Google Scholar
  31. Lancelot, J. (Ed.). (2001). WS-G experiment: Geochemical pore water characterisation of reference argillaceous samples from the Mont Terri Rock Laboratory. Mont Terri Technical Note, TN 1999-43. Wabern, Switzerland: Federal Office of Topography (swisstopo). http://www.mont-terri.ch.
  32. Laurich, B. (2015). Evolution of microstructure and porosity in faulted Opalinus Clay. Ph.D. dissertation, Rheinisch-Westfälische Techniche Hochschule (RWTH), Aachen, Germany.Google Scholar
  33. Laurich, B., Urai, J. L., Desbois, G., Vollmer, C., & Nussbaum, C. (2014). Microstructural evolution of an incipient fault zone in Opalinus Clay: Insights from an optical and electron microscopic study of ion-beam polished samples from the Main Fault in the Mont Terri Underground Research Laboratory. Journal of Structural Geology, 67, 107–128.CrossRefGoogle Scholar
  34. Laurich, B., Urai, J. L., & Nussbaum, C. (2016). Microstructures and deformation mechanisms in Opalinus Clay: Insights from scaly clay from the Main Fault in the Mont Terri Rock Laboratory (CH). Journal of Geophysical Research: Solid Earth. doi: 10.5194/se-2016-94. (submitted).Google Scholar
  35. Lerouge, C., Gaucher, E. C., Tournassat, C., Négrel, P., Crouzet, C., Guerrot, C., et al. (2010). Strontium distribution and origins in a natural clayey formation (Callovian-Oxfordian, Paris Basin, France): A new sequential extraction procedure. Geochimica et Cosmochimica Acta, 74, 2926–2942.CrossRefGoogle Scholar
  36. Logan, J. M., Dengo, C. A., Higgs, N. G., & Wang, Z. Z. (1992). Fabrics of experimental fault zones: Their development and relationship to mechanical behavior. International Geophysics Series, 51, 33–67.CrossRefGoogle Scholar
  37. Mazurek, M., Hurford, A. J., & Leu, W. (2006). Unravelling the multi-stage burial history of the Swiss Molasse Basin: Integration of apatite fission track, vitrinite reflectance and biomarker isomerisation analysis. Basin Research, 18, 27–50.CrossRefGoogle Scholar
  38. McArthur, J. M., Howarth, R. J., & Bailey, T. R. (2001). Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the marine Sr-isotope curve 0–509 Ma and accompanying look-up table for deriving numerical age. The Journal of Geology, 109, 155–170.CrossRefGoogle Scholar
  39. Milliken, K. L., & Reed, R. M. (2010). Multiple causes of diagenetic fabric anisotropy in weakly consolidated mud, Nankai accretionary prism, IODP Expedition 316. Journal of Structural Geology, 32, 1887–1898.CrossRefGoogle Scholar
  40. Mitra, G., & Ismat, Z. (2001). Microfracturing associated with reactivated fault zones and shear zones: What it can tell us about deformation history. Geological Society of London, Special Publications, 186, 113–140.CrossRefGoogle Scholar
  41. Nagra (2008). Vorschlag geologischer Standortgebiete für das SMA- und das HAA-Lager. Nagra Technischer Bericht, 08-04. Nagra, Wettingen, Switzerland. http://www.nagra.ch.
  42. Nussbaum, C., Amann, F., Aubourg, C., & Bossart, P. (2011). Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland). Swiss Journal of Geosciences, 104, 187–210.CrossRefGoogle Scholar
  43. Nussbaum, C., & Bossart, P. (2008). Geology. In M. Thury, & P. Bossart, (Eds.), Mont Terri rock laboratory project, programme 1996 to 2007 and results (pp. 29–37). Wabern, Switzerland: Federal Office of Topography (swisstopo). http://www.mont-terri.ch.
  44. Nussbaum, C., Kloppenburg, A., Caër, T., Bossart, P. (2017). Tectonic evolution around the Mont Terri rock laboratory, northwestern Swiss Jura: constraints from kinematic forward modelling. Swiss Journal of Geosciences, 110 (this issue).Google Scholar
  45. Nussbaum, C., Meier, O., Masset, O., Badertscher, N. (2006). Self-sealing of fault (SF) experiment drilling of resin impregnated boreholes part of drilling campaign of phase 11 drilling data, drillcore mapping and photo documentation. Mont Terri technical note, TN 2006-22. Wabern, Switzerland: Federal Office of Topography (swisstopo). http://www.mont-terri.ch.
  46. Ohmert, W. (1993). Eine obereozäne Foraminiferenfauna aus dem südlichen Oberrhein-Graben. Zitteliana, 20, 323–329.Google Scholar
  47. Pearson, F. J., Acros, D., Bath, D., Boisson, J. Y., Fernández, A. M., Gäbler, H.-E., et al. (2003). Mont Terri project: geochemistry of water in the opalinus clay formation at the Mont Terri rock laboratory. Federal Office for Water and Geology (FOWG), Geology Series No. 5. http://www.mont-terri.ch.
  48. Pearson, F. J., Arcos, D., Jordi, B., Fernandez, A. M., Gaucher, E., Pena, J., et al. (2001). Geochemical modelling and synthesis (GM) task: Compilation of aqueous geochemistry data collected during phases 4 and 5, rock property data from all phases and results of phase 5 geochemical modelling. Mont Terri technical note, TN 2000-36. Wabern, Switzerland: Federal Office of Topography (swisstopo). http://www.mont-terri.ch.
  49. Picot, L., Becker, D., Cavin, L., Pirkenseer, C., LaPaire, F., Rauber, G., et al. (2008). Sédimentologie et paléontologie des paléoenvironnements côtiers rupéliens de la Molasse marine rhénane dans le Jura suisse. Swiss Journal of Geosciences, 101, 483–513.CrossRefGoogle Scholar
  50. Pin, C., Joannon, S., Bosq, C., Le Fèvre, B., & Gauthier, P. J. (2003). Precise determination of Rb, Sr, Ba and Pb in geological materials by isotope dilution and ICP-quadrupole mass spectrometry following selective separation of the analytes. Journal of Analytical Spectrometry, 18, 135–141.CrossRefGoogle Scholar
  51. Piper, D. Z., & Bau, M. (2013). Normalized rare earth elements in water, sediments, and wine: Identifying sources and environmental redox conditions. American Journal of Analytical Chemistry, 4, 69–83.CrossRefGoogle Scholar
  52. Pirkenseer, C. (2007). Foraminifera, ostracoda and other microfossils of the southern Upper Rhine Graben: palaeoecology, biostratigraphy, palaeogeography and geodynamic implications. Ph.D. dissertation, University of Fribourg, Switzerland.Google Scholar
  53. Rieder, M., Cavazzini, G., D’Yakonov, Y. S., Frank-Kamenetskii, V. A., Gottardi, G., Guggenheim, S., et al. (1998). Nomenclature of the micas. Clays and Clay Minerals, 46, 586–595.CrossRefGoogle Scholar
  54. Roussé, S. (2006). Architecture et dynamique des séries marines et continentales de l’Oligocène moyen et supérieur du Sud du Fossé Rhénan: évolution des milieux de dépôts en contexte de rift en marge de l’avant-pays alpin. Ph.D. dissertation, University Louis Pasteur, Strasbourg, France.Google Scholar
  55. Rutter, E. H., Maddock, R. H., Hall, S. H., & White, S. H. (1986). Comparative microstructures of natural and experimentally produced clay-bearing fault gouges. Pure and Applied Geophysics, 124, 3–30.CrossRefGoogle Scholar
  56. Samuel, J., Rouault, R., & Besnus, Y. (1985). Analyse multi-élémentaire standardisée des matériaux géologiques en spectrométrie d’émission par plasma à couplage inductif. Analusis, 13, 312–317.Google Scholar
  57. Sasseville, C., Tremblay, A., Clauer, N., & Liewig, N. (2008). K–Ar time constraints on the evolution of polydeformed fold-thrust belts: the case of the Northern Appalachians (southern Québec). Journal of Geodynamics, 45, 99–119.CrossRefGoogle Scholar
  58. Schleicher, A. M., van der Pluijm, B. A., Solum, J. G., & Warr, L. N. (2006). Origin and significance of clay-coated fractures in mudrock fragments of the SAFOD borehole (Parkfield, California). Geophysical Research Letters, 33, 1–5.CrossRefGoogle Scholar
  59. Sissingh, W. (1998). Comparative Tertiary stratigraphy of the Rhine graben, Bresse graben and Molasse basin: correlation of Alpine foreland events. Tectonophysics, 300, 249–284.CrossRefGoogle Scholar
  60. Sissingh, W. (2006). Syn-kinematic palaeogeographic evolution of the West European platform: Correlation with Alpine plate collision and foreland deformation. Geologie en Mijnbouw, 85, 131–180.Google Scholar
  61. Sittler, C. (1965). Le Paléogène des fossés rhénan et rhodanien. Etudes sédimentologiques et paléo-climatiques. Strasbourg: Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Géologie.Google Scholar
  62. Solum, J. G. (2003). Influence of phyllosilicate mineral assemblages, fabrics, and fluids on the behavior of the Punchbowl fault, southern California. Journal of Geophysical Research, 108, 1–12.CrossRefGoogle Scholar
  63. Środoń, J., Clauer, N., Huff, W., Dudek, T., & Banas, M. (2009). K-Ar dating of Ordovician bentonites from the Baltic Basin and the Baltic Shield: implications for the role of temperature and time in the illitization of smectite. Clay Minerals, 44, 361–387.CrossRefGoogle Scholar
  64. Środoń, J., Elsass, F., McHardy, W. J., & Morgan, D. J. (1992). Chemistry of illite/smectite inferred from TEM measurements of fundamental particles. Clay Minerals, 27, 137–158.CrossRefGoogle Scholar
  65. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford: Blackwell.Google Scholar
  66. Techer, I., Clauer, N., Laurich, B., Nussbaum, C., Urai, J. L. (2017). Origin and timing of fluid flows in discrete petrofabric features of the “Main Fault” in the Opalinus Clay (Mont Terri, Switzerland): Clues from elemental and Sr isotopic analyses. Journal of Structural Geology (submitted).Google Scholar
  67. Ujiie, K., Tanaka, H., Saito, T., Tsutsumi, A., Mori, J. J., Kameda, J., et al. (2013). Low co-seismic shear stress on the Tohoku-Oki megathrust determined from laboratory experiments. Science, 342, 1211–1214.CrossRefGoogle Scholar
  68. Urai, J., & Wong, S. W. (1994). Deformation mechanisms in experimentally deformed shales. Annales Geophysicae, 12, C98.Google Scholar
  69. Ustaszewsi, K., Schuhmacher, M. E., & Schmid, S. (2005). Simultaneous normal faulting and extensional flexuring during rifting: An example from the southernmost Upper Rhine Graben. International Journal of Earth Sciences, 94, 680–696.CrossRefGoogle Scholar
  70. Ustaszewski, K., & Schmid, S. (2007). Latest Pliocene to recent thick-skinned tectonics at the Upper Rhine Graben-Jura Mountains junction. Swiss Journal of Geosciences, 100, 293–312.CrossRefGoogle Scholar
  71. Vannucchi, P., Maltman, A., Bettelli, G., & Clennell, B. (2003). On the nature of scaly fabric and scaly clay. Journal of Structural Geology, 25, 673–688.CrossRefGoogle Scholar
  72. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., et al. (1999). 87Sr:86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161, 59–88.CrossRefGoogle Scholar
  73. Vrolijk, P., & van der Pluijm, B. A. (1999). Clay gouge. Journal of Structural Geology, 21, 1039–1048.CrossRefGoogle Scholar
  74. Warr, L. N., & Cox, S. (2001). Clay mineral transformations and weakening mechanisms along the Alpine Fault, New Zealand. Geological Society, London, Special Publications, 186, 85–101.CrossRefGoogle Scholar
  75. Warr, L. N., Wojatschke, J., Carpenter, B. M., Marone, C., Schleicher, A. M., & van der Pluijm, B. A. (2014). A “slice-and-view” (FIB–SEM) study of clay gouge from the SAFOD creeping section of the San Andreas Fault at about 2.7 km depth. Journal of Structural Geology, 69, 234–244.CrossRefGoogle Scholar
  76. Worden, R. H., & Morad, S. (2003). Clay minerals in sandstones: Controls on formation, distribution and evolution. In R.H. Warden, S. Morad (Eds.), Clay mineral cements in sandstones. (pp.3–41). International Association of Sedimentologists Special Publication no. 34, Blackwell, Oxford.Google Scholar

Copyright information

© Swiss Geological Society 2017

Authors and Affiliations

  • Norbert Clauer
    • 1
    Email author
  • Isabelle Techer
    • 2
  • Christophe Nussbaum
    • 3
  • Ben Laurich
    • 4
    • 5
  1. 1.Laboratoire d’Hydrologie et de Géochimie de Strasbourg (CNRS-UdS)StrasbourgFrance
  2. 2.Equipe Associée 7352 CHROME, Université de NîmesNîmesFrance
  3. 3.Swiss Geological SurveyFederal Office of Topography SwisstopoWabernSwitzerland
  4. 4.Structural Geology, Tectonics and GeomechanicsRWTH Aachen UniversityAachenGermany
  5. 5.Federal Institute for Geosciences and Natural Resources BGRHannoverGermany

Personalised recommendations