Swiss Journal of Geosciences

, Volume 110, Issue 2, pp 699–719 | Cite as

Magmatic and tectonic history of Jurassic ophiolites and associated granitoids from the South Apuseni Mountains (Romania)

  • Daniela GallhoferEmail author
  • Albrecht von Quadt
  • Stefan M. Schmid
  • Marcel Guillong
  • Irena Peytcheva
  • Ioan Seghedi


The Jurassic ophiolites in the South Apuseni Mountains represent remnants of the Neotethys Ocean and belong to the East Vardar ophiolites that contain ophiolite fragments as well as granitoids and volcanics with island-arc affinity. New U–Pb zircon ages, and Sr and Nd isotope ratios give insights into their tectono-magmatic history. The ophiolite lithologies show tholeiitic MOR-type affinities, but are occasionally slightly enriched in Th and U, and depleted in Nb, which indicates that they probably formed in a marginal or back-arc basin. These ophiolites are associated with calc-alkaline granitoids and volcanics, which show trace element signatures characteristic for subduction-enrichment (high LILE, low HFSE). Low 87Sr/86Sr ratios (0.703836–0.704550) and high 143Nd/144Nd ratios (0.512599–0.512616) of the calc-alkaline series overlap with the ratios measured in the ophiolitic rocks (0.703863–0.704303 and 0.512496–0.512673), and hence show no contamination with continental crust. This excludes a collisional to post-collisional origin of the granitoids and is consistent with the previously proposed intra-oceanic island arc setting. The new U–Pb ages of the ophiolite lithologies (158.9–155.9 Ma, Oxfordian to Early Kimmeridgian) and granitoids (158.6–152.9 Ma, latest Oxfordian to Late Kimmeridgian) indicate that the two distinct magmatic series evolved within a narrow time range. It is proposed that the ophiolites and island arc granitoids formed above a long-lived NE-dipping subduction zone. A sudden flip in subduction polarity led to collision between island arc and continental margin, immediately followed by obduction of the ophiolites and granitoids on top of the continental margin of the Dacia Mega-Unit. Since the granitoids lack crustal input, they must have intruded the Apuseni ophiolites before both magmatic sequences were obducted onto the continental margin. The age of the youngest granitoid (~153 Ma, Late Kimmeridgian) yields an estimate for the maximum age of emplacement of the South Apuseni ophiolites and associated granitoids onto the Dacia Mega-Unit.


East Vardar ophiolites U–Pb zircon dating LA-ICP-MS Radiogenic Sr–Nd isotopes Obduction onto Dacia Mega-Unit Island arc 



This study was supported by the Swiss National Science Foundation Grants 200020-146681 and 20021-146651 and SNF scopes projects JRP 7BUPJ062396 and IZ73ZO_128089. Douwe van Hinsbergen and Kamil Ustaszewski are thanked for sharing their ideas concerning plate tectonic reconstructions, influencing parts of our Fig. 10. We thank Ramon Aubert, Markus Wälle, Lydia Zehnder and Muhammed Usman for support in the laboratories. We thank Franz Neubauer and Dejan Prelević for careful and helpful reviews.

Supplementary material

15_2016_231_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1420 kb)
15_2016_231_MOESM2_ESM.xlsx (122 kb)
Supplementary material 2 (XLSX 122 kb)


  1. Anders, B., Reischmann, T., Poller, U., & Kostopoulos, D. (2005). Age and origin of granitic rocks of the eastern Vardar Zone, Greece: New constraints on the evolution of the Internal Hellenides. Journal of the Geological Society, 162(5), 857–870.CrossRefGoogle Scholar
  2. Balintoni, I. (1994). Structure of the Apuseni Mountains. Romanian Journal of Tectonics and Regional Geology ALCAPA II field guidebook “South Carpathians and Apuseni Mountains”, 75, 37–58.Google Scholar
  3. Balintoni, I., Balica, C., Ducea, M. N., Chen, F. K., Hann, H. P., & Sabliovschi, V. (2009). Late Cambrian–Early Ordovician Gondwanan terranes in the Romanian Carpathians: A zircon U–Pb provenance study. Gondwana Research, 16(1), 119–133.CrossRefGoogle Scholar
  4. Balintoni, I., Balica, C., Ducea, M. N., Zaharia, L., Chen, F. K., Cliveti, M., et al. (2010). Late Cambrian–Ordovician northeastern Gondwanan terranes in the basement of the Apuseni Mountains, Romania. Journal of the Geological Society, 167(6), 1131–1145.CrossRefGoogle Scholar
  5. Bernoulli, D., & Laubscher, H. (1972). The palinspastic problem of the Hellenides. Eclogae Geologicae Helvetiae, 65(1), 107.Google Scholar
  6. Berza, T., Constantinescu, E., & Vlad, S. N. (1998). Upper Cretaceous magmatic series and associated mineralisation in the Carpathian–Balkan Orogen. Resource Geology, 48(4), 291–306.CrossRefGoogle Scholar
  7. Bonev, N., Marchev, P., Moritz, R., & Filipov, P. (2015). Timing of igneous accretion, composition, and temporal relation of the Kassandra–Sithonia rift-spreading center within the eastern Vardar suture zone, Northern Greece: Insights into Jurassic arc/back-arc systems evolution at the Eurasian plate margin. International Journal of Earth Sciences, 104(7), 1837–1864.CrossRefGoogle Scholar
  8. Borojević Šoštarić, S., Palinkaš, A. L., Neubauer, F., Cvetković, V., Bernroider, M., & Genser, J. (2014). The origin and age of the metamorphic sole from the Rogozna Mts., Western Vardar Belt: New evidence for the one-ocean model for the Balkan ophiolites. Lithos, 192–195, 39–55.Google Scholar
  9. Bortolotti, V., Chiari, M., Marroni, M., Pandolfi, L., Principi, G., & Saccani, E. (2013). Geodynamic evolution of ophiolites from Albania and Greece (Dinaric-Hellenic belt): One, two, or more oceanic basins? International Journal of Earth Sciences, 102(3), 783–811.CrossRefGoogle Scholar
  10. Bortolotti, V., Marroni, M., Nicolae, I., Pandolfi, L., Principi, G., & Saccani, E. (2002). Geodynamic implications of Jurassic ophiolites associated with island-arc volcanics, South Apuseni Mountains, Western Romania. International Geology Review, 44(10), 938–955.CrossRefGoogle Scholar
  11. Bortolotti, V., Marroni, M., Nicolae, I., Pandolfi, L., Principi, G., & Saccani, E. (2004). An update of the Jurassic ophiolites and associated calc-alkaline rocks in the South Apuseni Mountains (western Romania). Ofioliti, 29(1), 5–18.Google Scholar
  12. Bortolotti, V., & Principi, G. (2005). Tethyan ophiolites and Pangea break-up. Island Arc, 14(4), 442–470.CrossRefGoogle Scholar
  13. Božović, M., Prelević, D., Romer, R. L., Barth, M., Van Den Bogaard, P., & Boev, B. (2013). The Demir Kapija Ophiolite, Macedonia (FYROM): A snapshot of subduction initiation within a back-arc. Journal of Petrology, 54(7), 1427–1453.CrossRefGoogle Scholar
  14. Bucur, I., & Săsăran, E. (2005). Micropaleontological assemblages from the upper Jurassic–lower Cretaceous deposits of Trascău Mountains and their biostratigraphic significance. Acta Paleontologica Romaniae, 5, 27–38.Google Scholar
  15. Cohen, K., Finney, S., Gibbard, P., & Fan, J.-X. (2013). The ICS international chronostratigraphic chart. Episodes, 36(3), 199–204.Google Scholar
  16. Csontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1), 1–56.CrossRefGoogle Scholar
  17. Dallmeyer, R. D., Pana, D. I., Neubauer, F., & Erdmer, P. (1999). Tectonothermal evolution of the Apuseni Mountains, Romania: Resolution of Variscan versus alpine events with Ar-40/Ar-39 ages. Journal of Geology, 107(3), 329–352.CrossRefGoogle Scholar
  18. Dilek, Y., & Furnes, H. (2011). Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(3–4), 387–411.CrossRefGoogle Scholar
  19. Elliott, T. (2003). Tracers of the slab. Geophysical Monograph Series, 138, 23–45.Google Scholar
  20. Floyd, P., Yaliniz, M., & Goncuoglu, M. (1998). Geochemistry and petrogenesis of intrusive and extrusive ophiolitic plagiogranites, Central Anatolian Crystalline Complex, Turkey. Lithos, 42(3), 225–241.CrossRefGoogle Scholar
  21. Fügenschuh, B., & Schmid, S. M. (2005). Age and significance of core complex formation in a very curved orogen: Evidence from fission track studies in the South Carpathians (Romania). Tectonophysics, 404(1–2), 33–53.CrossRefGoogle Scholar
  22. Gaggero, L., Marroni, M., Pandolfi, L., & Buzzi, L. (2009). Modelling of oceanic lithosphere obduction: Constraints from the metamorphic sole of Mirdita ophiolites (Northern Albania). Ofioliti, 34(1), 17–42.Google Scholar
  23. Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U–Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems, 9(3), 1–13.CrossRefGoogle Scholar
  24. Gröger, H. R., Tischler, M., Fügenschuh, B., & Schmid, S. M. (2013). Thermal history of the Maramureş area (Northern Romania) constrained by zircon fission track analysis: Cretaceous metamorphism and Late Cretaceous to Paleocene exhumation. Geologica Carpathica, 64(5), 383–398.CrossRefGoogle Scholar
  25. Haas, J., & Pero, C. (2004). Mesozoic evolution of the Tisza Mega-unit. International Journal of Earth Sciences, 93(2), 297–313.CrossRefGoogle Scholar
  26. Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., & Bernoulli, D. (2010). Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth-Science Reviews, 102(3–4), 121–158.CrossRefGoogle Scholar
  27. Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W., & van Calsteren, P. (1997). U–Th Isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276(5312), 551–555.CrossRefGoogle Scholar
  28. Hoeck, V., Ionescu, C., Balintoni, I., & Koller, F. (2009). The Eastern Carpathians “ophiolites” (Romania): Remnants of a Triassic ocean. Lithos, 108(1–4), 151–171.CrossRefGoogle Scholar
  29. Iancu, V., Berza, T., Seghedi, A., Gheuca, I., & Hann, H.-P. (2005). Alpine polyphase tectono-metamorphic evolution of the South Carpathians: A new overview. Tectonophysics, 410(1–4), 337–365.CrossRefGoogle Scholar
  30. Ionescu, C., Hoeck, V., Tomek, C., Koller, F., Balintoni, I., & Beşuţiu, L. (2009). New insights into the basement of the Transylvanian Depression (Romania). Lithos, 108(1–4), 172–191.CrossRefGoogle Scholar
  31. Karamata, S. (2006). The geological development of the Balkan Peninsula related to the approach, collision and compression of Gondwanan and Eurasian units. Geological Society, London, Special Publications, 260(1), 155–178.CrossRefGoogle Scholar
  32. Klötzli, S. U., Buda, G., & Skiöld, T. (2004). Zircon typology, geochronology and whole rock Sr–Nd isotope systematics of the Mecsek Mountain granitoids in the Tisia Terrane (Hungary). Mineralogy and Petrology, 81(1), 113–134.CrossRefGoogle Scholar
  33. Koglin, N., Kostopoulos, D., & Reischmann, T. (2009). Geochemistry, petrogenesis and tectonic setting of the Samothraki mafic suite, NE Greece: Trace-element, isotopic and zircon age constraints. Tectonophysics, 473(1–2), 53–68.CrossRefGoogle Scholar
  34. Koglin, N., Reischmann, T., Kostopoulos, D., Matukov, D., & Sergeev, S. (2007). Zircon SHRIMP ages and the origin of ophiolitic rocks from the NE Aegean region, Greece. Geophysical Research Abstracts, 9(paper 06848).Google Scholar
  35. Kounov, A., & Schmid, S. M. (2013). Fission-track constraints on the thermal and tectonic evolution of the Apuseni Mountains (Romania). International Journal of Earth Sciences, 102(1), 207–233.CrossRefGoogle Scholar
  36. Kukoč, D., Goričan, Š., Košir, A., Belak, M., Halamić, J., & Hrvatović, H. (2015). Middle Jurassic age of basalts and the post-obduction sedimentary sequence in the Guevgueli Ophiolite Complex (Republic of Macedonia). International Journal of Earth Sciences, 104(2), 435–447.CrossRefGoogle Scholar
  37. Ludwig, K. J. (2012). User’s manual for Isoplot 3.75. A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication 5, 75 p.Google Scholar
  38. Lupu, M., Antonescu, E., Avram, E., Dumitrica, P., & Nicolae, I. (1995). Comments on the age of some ophiolites from the north Drocea Mts. Romanian Journal of Tectonics and Regional Geology, 76, 21–25.Google Scholar
  39. Lupu, H., Peltz, S., Bostinescu, S., Rosu, E., Kräutner, H. G., Horvath, M., et al. (1986). Harta Geologica scale 1:50000 sheet 89a Gurasada. Bucharest: Institutul de Geologie si Geofizica.Google Scholar
  40. Márton, E., Tischler, M., Csontos, L., Fügenschuh, B., & Schmid, S. (2007). The contact zone between the ALCAPA and Tisza-Dacia mega-tectonic units of Northern Romania in the light of new paleomagnetic data. Swiss Journal of Geosciences, 100(1), 109–124.CrossRefGoogle Scholar
  41. Mattinson, J. M. (2005). Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220(1–2), 47–66.CrossRefGoogle Scholar
  42. Meinhold, G., Kostopoulos, D., Reischmann, T., Frei, D., & BouDagher-Fadel, M. K. (2009). Geochemistry, provenance and stratigraphic age of metasedimentary rocks from the eastern Vardar suture zone, northern Greece. Palaeogeography, Palaeoclimatology, Palaeoecology, 277(3–4), 199–225.CrossRefGoogle Scholar
  43. Miyashiro, A. (1974). Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4), 321–355.CrossRefGoogle Scholar
  44. Nicolae, I., & Saccani, E. (2003). Petrology and geochemistry of the late Jurassic calc-alkaline series associated to Middle Jurassic ophiolites in the South Apuseni Mountains (Romania). Schweizerische Mineralogische und Petrographische Mitteilungen, 83(1), 81–96.Google Scholar
  45. Nicolae, I., Soroiu, M., & Bonhomme, G. M. (1992). Ages K–Ar de quelques ophiolites des Monts Apuseni du sud (Roumanie) et leur signification géologique. Géologie Alpine, 68, 77–83.Google Scholar
  46. Pamić, J., Tomljenović, B., & Balen, D. (2002). Geodynamic and petrogenetic evolution of Alpine ophiolites from the central and NW Dinarides: An overview. Lithos, 65(1–2), 113–142.Google Scholar
  47. Pana, D. I., Heaman, L. M., Creaser, R. A., & Erdmer, P. (2002). Pre-alpine crust in the Apuseni Mountains, Romania: Insights from Sm–Nd and U–Pb data. Journal of Geology, 110(3), 341–354.CrossRefGoogle Scholar
  48. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–2518.CrossRefGoogle Scholar
  49. Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., & Maas, R. (2010). Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11(3), Q0AA06.CrossRefGoogle Scholar
  50. Pǎtraşcu, S., Bleahu, M., & Panaiotu, C. (1990). Tectonic implications of paleomagnetic research into Upper Cretaceous magmatic rocks in the Apuseni Mountains, Romania. Tectonophysics, 180(2–4), 309–322.Google Scholar
  51. Pǎtraşcu, S., Panaiotu, C., Seclaman, M., & Panaiotu, C. E. (1994). Timing of rotational motion of Apuseni Mountains (Romania)—Paleomagnetic data from Tertiary magmatic rocks. Tectonophysics, 233(3–4), 163–176.Google Scholar
  52. Petrus, J. A., & Kamber, B. S. (2012). VizualAge: A novel approach to laser ablation ICP-MS U–Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36(3), 247–270.CrossRefGoogle Scholar
  53. Pin, C., Briot, D., Bassin, C., & Poitrasson, F. (1994). Concomitant separation of strontium and samarium–neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Analytica Chimica Acta, 298(2), 209–217.CrossRefGoogle Scholar
  54. Reiser, M. K. (2015). The tectonometamorphic evolution of the Apuseni Mountains during the Cretaceous. PhD Thesis, University of Innsbruck.Google Scholar
  55. Reiser, M. K., Schuster, R., Spikings, R., Tropper, P., & Fügenschuh, B. (2016). From nappe stacking to exhumation: Cretaceous tectonics in the Apuseni Mountains (Romania). International Journal of Earth Sciences, 1–27.Google Scholar
  56. Robertson, A., Karamata, S., & Šarić, K. (2009). Overview of ophiolites and related units in the Late Palaeozoic–Early Cenozoic magmatic and tectonic development of Tethys in the northern part of the Balkan region. Lithos, 108(1–4), 1–36.CrossRefGoogle Scholar
  57. Rollinson, H. (2009). New models for the genesis of plagiogranites in the Oman ophiolite. Lithos, 112(3), 603–614.CrossRefGoogle Scholar
  58. Rosu, E., Seghedi, I., Downes, H., Alderton, D. H. M., Szakacs, A., Pecskay, Z., et al. (2004). Extension-related Miocene calc-alkaline magmatism in the Apuseni Mountains, Romania: Origin of magmas. Schweizerische Mineralogische und Petrographische Mitteilungen, 84(1–2), 153–172.Google Scholar
  59. Rudnick, R. L., & Gao, S. (2014). 4.1—Composition of the continental crust. In H. D. H. K. Turekian (Ed.), Treatise on geochemistry (2nd ed., pp. 1–51). Oxford: Elsevier.Google Scholar
  60. Saccani, E., Nicolae, I., & Tassinari, R. (2001). Tectono-magmatic setting of the Jurassic ophiolites from the Soth Apuseni Mountains (Romania): Petrological and geochemical evidence. Ofioliti, 26, 9–22.Google Scholar
  61. Săndulescu, M. (1984). Geotectonica României. Bucharest: Editura Tehnică.Google Scholar
  62. Săndulescu, M. (1994). Overview on Romanian Geology. 2. Alcapa congress field guidebook. Romanian Journal of Tectonics and Regional Geology, 75(Suppl. 2), 3–15.Google Scholar
  63. Šarić, K., Cvetković, V., Romer, R. L., Christofides, G., & Koroneos, A. (2009). Granitoids associated with East Vardar ophiolites (Serbia, F.Y.R. of Macedonia and northern Greece): Origin, evolution and geodynamic significance inferred from major and trace element data and Sr–Nd–Pb isotopes. Lithos, 108(1–4), 131–150.Google Scholar
  64. Savu, H. (1996). A comparative study of the ophiolites obducted from two different segments of the Mures ocean “Normal” median ridge (Romania). Romanian Journal of Petrology, 77, 46–60.Google Scholar
  65. Savu, H., Berlbeleac, I., Stefan, A., & Papaianopol, F. (1979a). Harta Geologica scale 1:50000 sheet 73a Halmagiu. Bucharest: Institutul de Geologie si Geofizica.Google Scholar
  66. Savu, H., Lupu, M., Avram, E., & Marinescu, F. (1979b). Harta Geologica scale 1:50000 sheet 72c Săvârşin. Bucharest: Institutul de Geologie si Geofizica.Google Scholar
  67. Savu, H., Lupu, M., Lupu, D., Stefan, A., & Istrate, G. (1979c). Harta Geologica scale 1:50000 sheet 72d Rosia Noua. Bucharest: Institutul de Geologie si Geofizica.Google Scholar
  68. Savu, H., Marinescu, F., Rosu, E., Nicolae, I., Muresan, M., & Popescu, A. (1991). Harta Geologica scale 1:50000 sheet 88b Lapugi-Costei. Bucharest: Institutul de Geologie si Geofizica.Google Scholar
  69. Savu, H., Udrescu, C., & Neacsu, V. (1981). Geochemistry and geotectonic setting of ophiolites and island arc volcanics in the Mures zone (Romania). Ofioliti, 6(2–3), 269–286.Google Scholar
  70. Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., et al. (2008). The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101(1), 139–183.CrossRefGoogle Scholar
  71. Schuller, V., Frisch, W., Danisik, M., Dunkl, I., & Melinte, M. C. (2009). Upper Cretaceous Gosau deposits of the Apuseni Mountains (Romania)—Similarities and differences to the Eastern Alps. Austrian Journal of Earth Sciences, 102(1), 133–145.Google Scholar
  72. Searle, M., & Cox, J. (1999). Tectonic setting, origin, and obduction of the Oman ophiolite. Geological Society of America Bulletin, 111(1), 104–122.CrossRefGoogle Scholar
  73. Seghedi, I., Downes, H., Szakács, A., Mason, P. R. D., Thirlwall, M. F., Roşu, E., et al. (2004). Neogene–Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: A synthesis. Lithos, 72(3–4), 117–146.CrossRefGoogle Scholar
  74. Şerban, D., Bucur, I., & Săsăran, E. (2004). Micropaleontological assemblages and microfacies characteristics of the Upper Jurassic limestones from Căprioara-Pojoga (Mureş trough). Acta Paleontologica Romaniae, 4, 475–484.Google Scholar
  75. Stracke, A., Hofmann, A. W., & Hart, S. R. (2005). FOZO, HIMU, and the rest of the mantle zoo. Geochemistry Geophysics Geosystems, 6, 1–20.CrossRefGoogle Scholar
  76. Sun, S.-S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313–345.CrossRefGoogle Scholar
  77. Turpaud, P. (2006). Characterization of igneous terranes by zircon dating: Implications for the UHP relicts occurrences and suture identification in the Central Rhodope, Northern Greece. PhD Thesis, Johannes Gutenberg-Universität Mainz.Google Scholar
  78. Ustaszewski, K., Kounov, A., Schmid, S. M., Schaltegger, U., Krenn, E., Frank, W., & Fugenschuh, B. (2010). Evolution of the Adria-Europe plate boundary in the northern Dinarides: From continent-continent collision to back-arc extension. Tectonics, 29, 1–34.CrossRefGoogle Scholar
  79. Ustaszewski, K., Schmid, S. M., Fügenschuh, B., Tischler, M., Kissling, E., & Spakman, W. (2008). A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early Miocene. Swiss Journal of Geosciences, 101, 273–294.CrossRefGoogle Scholar
  80. von Quadt, A., Gallhofer, D., Guillong, M., Peytcheva, I., Waelle, M., & Sakata, S. (2014). U–Pb dating of CA/non-CA treated zircons obtained by LA-ICP-MS and CA-TIMS techniques: Impact for their geological interpretation. Journal of Analytical Atomic Spectrometry, 29(9), 1618–1629.CrossRefGoogle Scholar
  81. Woodhead, J. D., Hergt, J. M., Davidson, J. P., & Eggins, S. M. (2001). Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth and Planetary Science Letters, 192(3), 331–346.CrossRefGoogle Scholar
  82. Zachariadis, P. T. (2007). Ophiolites of the eastern Vardar Zone, N. Greece. PhD Thesis, Johannes Gutenberg-Universität Mainz.Google Scholar
  83. Zacher, W., & Lupu, M. (1999). Pitfalls on the race for an ultimate Tethys model. International Journal of Earth Sciences, 88(1), 111–115.CrossRefGoogle Scholar
  84. Zimmerman, A., Stein, H., Hannah, J., Koželj, D., Bogdanov, K., & Berza, T. (2008). Tectonic configuration of the Apuseni–Banat—Timok–Srednogorie belt, Balkans-South Carpathians, constrained by high precision Re–Os molybdenite ages. Mineralium Deposita, 43(1), 1–21.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2016

Authors and Affiliations

  1. 1.Institute of Geochemistry and PetrologyETH ZürichZurichSwitzerland
  2. 2.Institute of GeophysicsETH ZürichZurichSwitzerland
  3. 3.Department of Geochemistry and PetrologyBulgarian Academy of SciencesSofiaBulgaria
  4. 4.Institute of GeodynamicsRomanian AcademyBucharestRomania

Personalised recommendations