Advertisement

Swiss Journal of Geosciences

, Volume 107, Issue 1, pp 101–112 | Cite as

2D geological–geophysical model of the Timok Complex (Serbia, SE Europe): a new perspective from aeromagnetic and gravity data

  • Snežana Ignjatović
  • Ivana Vasiljević
  • Milenko Burazer
  • Miodrag Banješević
  • Ivan Strmbanović
  • Vladica Cvetković
Article
  • 344 Downloads

Abstract

The study reports new aeromagnetic and gravity data for the northern part of the Timok Magmatic Complex (TMC), East Serbia. The TMC is part of the Tethyan Eurasian metallogenic zone well known for hosting large copper and gold deposits. The complex formed by continuous volcanic activity 90–78 Ma ago, that developed in roughly three phases: Turonian andesites, Santonian–Campanian andesites/basaltic andesites (both mostly volcanic) and Campanian latites/monzonites (mostly shallow intrusive). The aeromagnetic measurements included acquiring total magnetic intensity data that were corrected for diurnal variations, leveling, microleveling, calculated normal field values, calculated anomaly values of total magnetic field intensity and reduction to the pole. The gravity measurements were carried out in an irregular grid with relative gravity values obtained using a Worden gravity meter. 2D modeling reveals that the subsurface extension of the Campanian Valja Strž pluton is ten times larger than it is indicated by its surface outcrops. This implies that the area south and southeast from the pluton can be interesting in terms of finding new porphyry systems. The model indicates that this intrusive body should not be considered as a deeply dissected pluton. This sheds new light onto its potential with respect to epithermal gold mineralization, as well. The model also suggests that there are larger non-exposed bodies of Santonian–Campanian volcanics and near-surface hydrothermally altered rocks than it is inferred from geological maps. The results of our study suggest that further interdisciplinary investigations in the TMC, in particular those integrating geophysics and geology, may have potential of advancing the existing exploration models.

Keywords

Banatitic belt Geophysical survey Copper deposits 

Notes

Acknowledgements

This study was supported by the Serbian Ministry of Education, Science and Technological Development (Projects Nos. 176016 and 33003). Special support was provided by the SCOPES Project (IZ73Z0-128089) funded by the Swiss National Science Foundation, which covered most of field expenses. CV thanks to the Serbian Academy of Sciences and Arts (Project Geodynamics).

Supplementary material

15_2014_161_MOESM1_ESM.doc (32 kb)
Supplementary material 1 (DOC 31 kb)
15_2014_161_MOESM2_ESM.jpg (3.3 mb)
Supplementary material 2 (JPEG 3375 kb)
15_2014_161_MOESM3_ESM.jpg (3.5 mb)
Supplementary material 3 (JPEG 3602 kb)
15_2014_161_MOESM4_ESM.jpg (2.9 mb)
Supplementary material 4 (JPEG 2937 kb)
15_2014_161_MOESM5_ESM.jpg (2.7 mb)
Supplementary material 5 (JPEG 2796 kb)
15_2014_161_MOESM6_ESM.jpg (3.3 mb)
Supplementary material 6 (JPEG 3345 kb)
15_2014_161_MOESM7_ESM.jpg (2.9 mb)
Supplementary material 7 (JPEG 2996 kb)

References

  1. Andrić, B., Antonijević, I., Grubić, A., Dragašević, T., Đorđević, M., & Terzić M. (1972). Analiza građe Timočkog rov-sinklinorijuma u svetlosti novih geoloških i geofizičkih istraživanja. III Savetovanje o istraživanju bakrove mineralizacije na teritoriji SFRJ, Bor, p. 16.Google Scholar
  2. Antonijević, A., & co-authors. (1968). Basic geological map of SFRY 1:100.000, Sheet Žagubica L 34-140. Belgrade: Federal Geological Institute.Google Scholar
  3. Antonijević, A., & co-authors. (1974). Basic geological map of SFRY 1:100.000, Sheet Bor L 34-141. Belgrade: Federal Geological Institute.Google Scholar
  4. Antonijević, I., Grubić, A., & Đorđević, M. (1974). The Upper Cretaceous paleorift in eastern Serbia. In S. Karamata (Ed.), Metallogeny and concept of the geotectonic development of Yugoslavia (pp. 315–339). Faculty of Mining and Geology: Belgrade.Google Scholar
  5. Banješević, M. (2006). Gornjokredni magmatizam Timočkog magmatskog kompleksa. Ph.D. dissertation, University of Belgrade (184 pp). Belgrade: Faculty of Mining and Geology.Google Scholar
  6. Banješević, M., Cocić, S., & Radović, M. (2001). Petrology and K/Ar ages of volcanic rocks for widen Bor zone as the part of the Timok Magmatic Complex (East Serbia). ABCD GEODE Workshop, Vata Bai, Romania, Abstract, pp. 39.Google Scholar
  7. Banješević, M., Cvetković, V., Koželj, D., Peytcheva, I., & von Quadt, A. (2002). The Timok Magmatic Complex and Ridan Krepoljin Zone: Geodynamical Evolution. In: D. Koželj, & R. Jelenković (Eds.), International SymposiumGeology and metallogeny of copper and gold deposits in the Bor metallogenic zoneBor 100 years (pp. 199–202), Special issue, RTB Bor Holding Company.Google Scholar
  8. Banješević, M., Cvetković, V., von Quadt, A., Peytcheva, I., Cocić, S. (2006). Geodynamic reconstructions based of the magmatism in the Timok magmatic complex (east Serbia)—part of the Carpathian-Balkan belt. XVII Congress CBGA. Belgrade, Serbian Geological Society, Abstracts pp. 27–29.Google Scholar
  9. Berza, T., Constantinescu, E., & Serban-Nicolae, V. (1998). Upper Cretaceous magmatic series and associated mineralisation in the Carpathian-Balkan Orogen. Resource Geology, 48, 291–306.CrossRefGoogle Scholar
  10. Blakely, J. R. (1995). Potential theory in gravity and Magnetic application (441 pp.). Cambridge: Cambridge University Press.Google Scholar
  11. Ciobanu, C., Cook., Stein H. (2002). Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenetic Belt. Mineralium Deposita, 37, 541–567.Google Scholar
  12. Clark, H. A., & Ullrich, D. T. (2004). 40Ar/39Ar age data for andesitic magmatism and hydrothermal activity in the Timok Massif, eastern Serbia: Implications for metallogenetic relationships in the Bor copper-gold subprovince. Mineralium Deposita, 39, 256–262.CrossRefGoogle Scholar
  13. Cassinis, G. (1930). Sur l'adoption d'une formule internationale pour la pesanteur normale. Bulletin Géodésique, 26, 40–49.CrossRefGoogle Scholar
  14. Cooper, G. R. J., & Cowan, D. R. D. (2005). Differential reduction to the pole. Computer & Geosciences, 31, 989–999.CrossRefGoogle Scholar
  15. Cooper, G. R. J., & Cowan, D. R. D. (2006). Enhancing potential field data using filters based on the local phase. Computer & Geosciences, 32, 1585–1591.CrossRefGoogle Scholar
  16. Đorđević, M., & Banješević, M. (1997). Geologija južnog dela Timočke eruptivne oblasti, Tumač i geološka karta 1:50000 (p. 171). Savezno Ministarstvo za privredu: Beograd.Google Scholar
  17. Goussev, S. A., Pierce, J. W., Egorov, V. I. (2007). Magnetic basement: Gravity guided magnetic source depth analysis and interpretation. EGM 2007 International Workshop Innovation in EM, Grav and Mag Methods: A new Perspective for Exploration, Capri, Italy, April 15–18, 2007.Google Scholar
  18. Hedenquist, J. W., Izawa, E., Arribas, A. (1996). Epithermal gold deposits: Style, characteristics and exploration. Society of Resource Geology of Japan, Special Publication 1, pp. 32.Google Scholar
  19. Janković, S. (1977). The copper deposits and geotectonic setting of the Tethyan Eurasian Metallogenetic Belt. Mineralium Deposita, 12, 37–47.CrossRefGoogle Scholar
  20. Janković, S. (1990). Types of copper deposits related to volcanic environment in the Bor district, Yugoslavia. Geologische Rundschau, 79, 467–478.CrossRefGoogle Scholar
  21. Janković, S., Jelenković, R., Koželj D. (2002). Borsko ležište bakra i zlataThe Bor Copper and Gold Deposit (298 pp.), On the occasion of 100 years since discovery Bor ore deposit, Bor Lake, RTB Bor Holding Company.Google Scholar
  22. Karamata, S., Knežević, V., Pécskay, Z., & Đorđević, M. (1997). Magmatism and metallogeny of the Ridanj-Krepoljin belt (Eastern Serbia) and their correlation with northern and eastern analogues. Mineralium Deposita, 32, 452–458.CrossRefGoogle Scholar
  23. Knežević, V. (1960). Granitski odlomci u vulkanskim brečama kod Brestovačke Banje i Bora. Zbornik Rudarsko-geološkog fakulteta, 6, 107–113.Google Scholar
  24. Kolb, M., von Quadt, A., Peytcheva, I., Heinrich, C. A., Fowler, S. J., & Cvetković, V. (2013). Adakite-like and normal arc Magmas: Distinct fractionation paths in the East Serbian segment of the Balkan-Carpathian Arc. Journal of Petrology, 54, 421–451.CrossRefGoogle Scholar
  25. Koželj, D. (2002). Epitermalna mineralizacija zlata Borske metalogenetske zone. Morfogenetski tipovi, strukturno-teksturni varijeteti i potencijalnost (219 pp.). On the occasion of 100 years since discovery Bor ore deposit, Bor Lake, RTB Bor Holding Company.Google Scholar
  26. Koželj, D., & Jelenković, R. (2001). Ore forming environments of epithermal gold mineralization in the Bor metallogenetic zone, Serbia, Yugoslavia. 6th Biennial SGA Meeting, Krakow, pp. 535–538.Google Scholar
  27. Krstić, B., & Karamata, S. (1992). Terrranes of the Eastern Serbian Carpatho-Balkanides. Comptes rendus des Seances de la Société Serbe de Géologie, Livre Jubilaire (19811991), pp. 57–74.Google Scholar
  28. Li, X. (2008). Magnetic reduction-to-the-pole at low latitudes: Observations and considerations. The Leading Edge, 27, 990–1002.CrossRefGoogle Scholar
  29. Lips, A. (2002). Correlating magmatic–hydrothermal ore deposit formation over time with geodynamic processes in SE Europe. In: D. Blundell, F. Neubauer & A. von Quadt (Eds.), The timing and location of major ore deposits in an evolving orogen (pp. 69–79). Geological Society of London, Special Publications 204. Google Scholar
  30. Lips, A., Herrington, R. J., Stein, G., Koželj, D., Popov, K., & Wijbrans, J. R. (2004). Refined timing of porphyry copper formation in the Serbian and Bulgarian portions of the Cretaceous Carpatho-Balkan Belt. Economic Geology, 99, 601–609.CrossRefGoogle Scholar
  31. Ljubović-Obradović, D., Carevac, I., Mirković, M., & Protić, N. (2011). Upper Cretaceous volcanoclastic-sedimentary formations in the Timok Eruptive Area (eastern Serbia): new biostratigraphic data from planktonic foraminifera. Geologica Carpathica, 62, 435–446.Google Scholar
  32. Luyendyk, A. P. J. (1997). Processing of airborne magnetic data. Journal of Australian Geology & Geophysics, 17, 31–38.Google Scholar
  33. Mitchell, A. H. G. (1996). Distribution and genesis of some epizonal Zn/Pb and Au provinces in the Carpathia-Balkan region. Transactions of the Institution of Mining and Metallurgy Section B, 105, 127–138.Google Scholar
  34. Monthel, J., Vadala, P., Leistel, J. M., Cottard, F., Ilić, M., Štrumberger, A., Tošović, R., Stepanović, A. (2002). Mineral deposits and mining districts of Serbia. Compilation map and GIS databases. BRGM/RC-51448-FR, 67 pp.Google Scholar
  35. Nabigian, M. N. (1972). The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics, 37, 507–517.CrossRefGoogle Scholar
  36. Pačevski, A., Götzinger, M., Dimitrijević, R., & Cvetković, L. (2007). Oscillatory zoning in wolframite from Osanica, near Bor, Serbia. Neues Jahrbuch für Mineralogie Abhandlungen, 184, 151–160.CrossRefGoogle Scholar
  37. Pačevski, A., Libowitzky, E., Živković, P., Dimitrijević, R., & Cvetković, L. (2008). Copper-bearing pyrite from the Čoka Marin polymetallic deposit, Serbia: Mineral inclusions or true solid-solution? Canadian Mineralogist, 46, 249–261.CrossRefGoogle Scholar
  38. Pačevski, A., Moritz, R., Kouzmanov, K., Marquardt, K., Živković, P., & Cvetković, L. (2012). Texture and composition of Pb-bearing pyrite from the Čoka Marin polymetallic deposit, Serbia, controlled by nanoscale inclusions. Canadian Mineralogist, 50, 1–20.CrossRefGoogle Scholar
  39. Salem, A., Williams, S., Fairhead, J. D., Ravat, D., & Smith, R. (2007). Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives. The Leading Edge, 26, 1502–1505.CrossRefGoogle Scholar
  40. Săndulescu, M. (1984). Geotectonics of Romania (336 pp.). Bucuresti: Editura Tehnica.Google Scholar
  41. Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., et al. (2008). The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183.CrossRefGoogle Scholar
  42. Silitoe, R. H. (1993). Epithermal models: genetic types, geometrical controls and shallow features. Mineral Deposit Modelling. Geological Association of Canada, Special Paper, 40, 403–417.Google Scholar
  43. Stoykov, S., Peytcheva, I., von Quadt, A., Moritz, R., Frank, M., & Fontignie, D. (2004). Timing and magma evolution of the Chelopech volcanic complex (Bulgaria). Schweizerische Mineralogische und Petrographische Mitteilungen, 84, 101–117.Google Scholar
  44. Tarlowski, C., & Koch, I. (1988). On the problem of estimating the depth to the magnetic basement. Geophysics, 53, 1362–1363.CrossRefGoogle Scholar
  45. Vasković, N., Belousova, E., O’Reilly, S. Y., Griffin, W. L., Srećković-Batoćanin, D., Christofides, G. & Koroneos, A. (2012). New U-Pb dating and Hf-isotope composition of the Gornjane granitoids (South Carpathians, East Serbia). Acta Mineralogica-Petrographica, Abstract Series, Szeged, 7, 146.Google Scholar
  46. von Quadt, A., Ivanov, Z. & Peytcheva, I. (2001). The Central Srednogorie (Bulgaria) part of the Cu (Au–Mo) belt of Europe: A review of the geochronological data and the geodynamical models in the light of the new structural and isotopic studies. In A. Piestrzynski, (Ed.), Mineral Deposits at the Beginning of the 21st Century, Proceedings of the Joint Sixth Biennial SGA-SEG Meeting, Krakow (pp. 555–558).Tokyo: A.A. Balkema Publishers.Google Scholar
  47. von Quadt, A., Moritz, R., Peytcheva, I., & Heinrich, C. (2005). Geochronology and geodynamics of Late Cretaceous magmatism and Cu–Au mineralization in the Pangyurishte region of the Apuseni–Banat–Timok–Srednogorie belt, Bulgaria. Ore Geology Reviews, 27, 95–126.CrossRefGoogle Scholar
  48. von Quadt, A., Peytcheva, I., Cvetković, V., Banješević, M., & Koželj, D. (2002). Geochronology, geochemistry and isotope tracing of the Cretaceous magmatism of East-Serbia as part of the Apuseni–Timok–Srednogorie metallogenic belt. Geologica Carpathica, 53, 175–177.Google Scholar
  49. von Quadt, A., Peytcheva, I. & Heinrich, C. (2007). Upper Cretaceous magmatic evolution and related Cu–Au mineralization in Bulgaria and Serbia. In: C. J., Andrew (Ed.), Nineth Biennial Meeting of the Society for Geology Applied to Mineral Deposits SGA, Dublin (pp. 861–864). Dublin: Irish Association for Economic Geology.Google Scholar
  50. von Quadt, A., Peytcheva, I., Heinrich, C. A., Frank, M., & Cvetković, V. (2003). Evolution of the Cretaceous magmatism in the Apuseni–Timok–Srednogorie metallogenic belt and implications for the geodynamic reconstructions: new insight from geochronology, geochemistry and isotope studies. EGS-AGU-EUG Joint Assembly, 1, 9219.Google Scholar
  51. Zimmerman, A. (2006). Tectonic configuration of the Apuseni–Banat–Timok–Srednogorie Belt, Southeastern Europe, constrained by high precision Re–Os molybdenite ages. M.S. Thesis, Colorado State University, 91 pp.Google Scholar
  52. Zimmerman, A., Stein, H. J., Hannah, J. L., Koželj, D., Bogdanov, K., & Berza, T. (2008). Tectonic configuration of the Apuseni–Banat–Timok–Srednogorie belt, Balkans-South Carpathians, constrained by high precision Re/Os molybdenite ages. Mineralium Deposita, 43, 1–21.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2014

Authors and Affiliations

  • Snežana Ignjatović
    • 1
  • Ivana Vasiljević
    • 1
  • Milenko Burazer
    • 2
  • Miodrag Banješević
    • 3
  • Ivan Strmbanović
    • 4
  • Vladica Cvetković
    • 1
  1. 1.Faculty of Mining and GeologyUniversity of BelgradeBelgradeSerbia
  2. 2.NTC Geophysical DepartmentNIS-NaftagasBelgradeSerbia
  3. 3.Technical Faculty in BorUniversity of BelgradeBorSerbia
  4. 4.Avala Resources LtdBelgradeSerbia

Personalised recommendations