Swiss Journal of Geosciences

, Volume 106, Issue 3, pp 505–527 | Cite as

Provenance of the Upper Cretaceous to Eocene Gosau Group around and beneath the Vienna Basin (Austria and Slovakia)

  • Gerald Stern
  • Michael Wagreich


Chemistry of detrital garnets, chrome spinels and tourmalines of 30 selected samples in combination with the general heavy mineral distribution from 523 sandstone samples of the Upper Cretaceous to Eocene Gosau Group of the eastern part of the Eastern Alps and the western West Carpathians result in an advanced picture of sedimentary provenance and palaeogeographic evolution of that area. Garnets from Coniacian to Campanian sediments are partly derived from a metamorphic sole remnant of Neotethys ophiolites to the south. Tectonically high ophiolitic nappes, later on completely eroded, supplied mainly the paleogeographically southern Grünbach and Glinzendorf Gosau basins with ultramafic detritus, represented by chrome spinels of a mixed harzburgite/lherzolite composition, whereas no direct indications for a northern ophiolitic source, the Penninic accretionary wedge to the north of the Gosau basins, could be found. In the younger part of the Gosau basins fill, from the Maastrichtian to the Eocene, only almandine-rich garnets could be observed suggesting a southern provenance from low-grade metamorphic metapelites of exhuming Austroalpine metamorphic complexes. Ophiolite detritus is reduced in the Maastrichtian and disappears in the Paleogene.


Eastern Alps Western Carpathians Heavy mineral analysis Detrital garnet Detrital chrome spinel Electron microprobe 



Thanks to the OMV Aktiengesellschaft for providing in-house data and support of heavy mineral preparation and counting, and for financial support. Special thanks to Roman Sauer and Wolfgang Hujer for counting thousands of grains. Finally, thanks to the Austrian Academy of Sciences for the support of a DOC-fellowship (“DoktorandInnenprogramm”) to Gerald Stern.

Supplementary material

15_2013_150_MOESM1_ESM.xlsx (78 kb)
Supplementary material 1 (XLSX 77 kb)
15_2013_150_MOESM2_ESM.xlsx (18 kb)
Supplementary material 2 (XLSX 17 kb)
15_2013_150_MOESM3_ESM.xlsx (60 kb)
Supplementary material 3 (XLSX 60 kb)
15_2013_150_MOESM4_ESM.xlsx (54 kb)
Supplementary material 4 (XLSX 54 kb)
15_2013_150_MOESM5_ESM.xlsx (50 kb)
Supplementary material 5 (XLSX 49 kb)


  1. Arai, S. (1992). Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine, 56, 173–184.CrossRefGoogle Scholar
  2. Árgyelán, G. B. (1996). Geochemical investigations of detrital chrome spinels as a tool to detect an ophiolitic source area (Gerecse Mountains, Hungary). Acta Geologica Hungarica, 39, 341–368.Google Scholar
  3. Árgyelán, G. B., & Horváth, P. (2002). Heavy mineral assemblages of Senonian formations in the Transdanubian Range, Hungary. Acta Geologica Hungarica, 45, 319–339.CrossRefGoogle Scholar
  4. Aubrecht, R., & Krištίn, J. (1995). Provenance of detrital tourmaline in the Lower Jurassic of the Malé Karpaty Mts. Mineralia Slovaca, 27, 37–44.Google Scholar
  5. Aubrecht, R., Méres, Š., Sýkora, M., & Mikuš, T. (2009). Provenance of the detrital garnets and spinels from the Albian sediments of the Czorsztyn Unit (Pieniny Klippen Belt, Western Carpathians, Slovakia). Geologica Carpathica, 60, 463–483.CrossRefGoogle Scholar
  6. Balen, D., Operta, M., & Pamic, J. (2003). The geothermobarometry of Alpine amphibolites from the metamorphic sole of the Krivaja-Konjuh ultramafic massif (Dinaride Ophiolite Zone, Bosnia). Annales Universitatis Scientiarum Budapestinensis, Sectio Geologica, 35, 131–132.Google Scholar
  7. Barnes, S. J., & Roeder, P. L. (2001). The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 2279–2302.CrossRefGoogle Scholar
  8. Barth, T. F. W. (1962). Theoretical Petrology. New York: Wiley.Google Scholar
  9. Bestel, M., Gawronski, T., Abart, R., & Rhede, D. (2009). Compositional zoning of garnet porphyroblasts from the polymetamorphic Woelz Complex, Eastern Alps. Mineralogy and Petrology, 97, 173–188.CrossRefGoogle Scholar
  10. Bjerg, E. A., Ntaflos, T., Thöni, M., Aliani, P., & Labudia, C. H. (2009). Heterogeneous lithospheric mantle beneath northern Patagonia: Evidence from Prahuaniyeu garnet- and spinel-peridotites. Journal of Petrology, 50, 1267–1298.CrossRefGoogle Scholar
  11. Carosi, R., Cortesogno, L., Gaggero, L., & Marroni, M. (1996). Geological and petrological features of the metamorphic sole from the Mirdita Nappe, northern Albania. Ofioliti, 21, 21–40.Google Scholar
  12. Cookenboo, H. O., Bustin, R. M., & Wilks, K. R. (1997). Detrital chromian spinel compositions used to reconstruct the tectonic setting of provenance: Implications for orogeny in the Canadian Cordillera. Journal of Sedimentary Research, 67, 116–123.Google Scholar
  13. Decker, K., Faupl, P., & Müller, A. (1987). Synorogenic sedimentation on the Northern Calcareous Alps during the Early Cretaceous. In H. W. Flügel & P. Faupl (Eds.), Geodynamics of the Eastern Alps (pp. 126–141). Vienna: Deuticke.Google Scholar
  14. Deer, W. A., Howie, R. A., Zussman, J. (1962). The Rock-Forming Minerals. Ortho- and Ring Silicates (Vol. 1). London: Longman.Google Scholar
  15. Dick, H. J. B., & Bullen, T. (1984). Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86, 54–76.CrossRefGoogle Scholar
  16. Dietrich, V. J., & Franz, U. (1976). Ophiolith-Detritus in den santonen Gosau-Schichten (Nördliche Kalkalpen). Geotektonische Forschungen, 50, 85–109.Google Scholar
  17. Dimo-Lahitte, A., Monié, P., & Vergély, P. (2001). Metamorphic soles from the Albanian ophiolites: Petrology 40Ar/39Ar geochronology, and geodynamic evolution. Tectonics, 20, 78–96.CrossRefGoogle Scholar
  18. Egger, H., Krenmayr, H. G., Mandl, G. W., Matura, A., Nowotny, A., Pascher, G., et al. (1999). Geologische Übersichtskarte der Republik Österreich 1:15000000 (ohne Quartär). Wien: Geologische Bundesanstalt.Google Scholar
  19. Elitok, Ö., & Drüppel, K. (2008). Geochemistry and tectonic significance of metamorphic sole rocks beneath the Beyşehir-Hoyran ophiolite (SW-Turkey). Lithos, 100, 322–353.CrossRefGoogle Scholar
  20. Erkan, E. (1972). Die exotischen Gerölle in der Gosaukreide der nordöstlichen Kalkalpen (Stratigraphische Gliederung, Bestand, Schüttungsrichtungen). Mitteilungen der Geologischen Gesellschaft in Wien, 65, 33–108.Google Scholar
  21. Faryad, S. W., & Hoinkes, G. (2003). P-T gradient of Eo-Alpine metamorphism within the Austroalpine basement units east of the Tauern Window (Austria). Mineralogy and Petrology, 77, 129–159.CrossRefGoogle Scholar
  22. Faupl, P. (1983). Die Flyschfazies in der Gosau der Weyerer Bögen (Oberkreide, Nördliche Kalkalpen, Österreich). Jahrbuch der Geologischen Bundesanstalt, 126, 219–244.Google Scholar
  23. Faupl, P. & Pober, E. (1991). Zur Bedeutung detritischer Chromspinelle in den Ostalpen: Ophiolitischer Detritus aus der Vardarsutur. Jubiläumsschrift 20 Jahre geologische Zusammenarbeit Österreich-Ungarn, 1, 133–143.Google Scholar
  24. Faupl, P., Pober, E., & Wagreich, M. (1987). Facies development of the Gosau Group of the eastern parts of the Northern Calcareous Alps during the Cretaceous and Paleogene. In H. W. Flügel & P. Faupl (Eds.), Geodynamics of the Eastern Alps (pp. 142–155). Vienna: Deuticke.Google Scholar
  25. Faupl, P., & Sauer, R. (1978). Zur Genese roter Pelite in Turbiditen der Flyschgosau in den Ostalpen (Oberkreide-Alttertiär). Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1978, 65–86.Google Scholar
  26. Faupl, P. & Wagreich, M. (1996). Basin analysis of the Gosau Group of the Northern Calcareous Alps (Turonian-Eocene, Eastern Alps). In G. Wessely & W. Liebl (Eds.), Oil and Gas in Alpidic Thrustbelts and Basins of Central and Eastern Europe. EAGE Special Publication no. 5 (pp. 127–135). London: Geological Society.Google Scholar
  27. Faupl, P., & Wagreich, M. (2000). Late Jurassic to Eocene paleogeography and geodynamic evolution of the Eastern Alps. Mitteilungen der Österreichischen Geologischen Gesellschaft, 92, 79–94.Google Scholar
  28. Garzanti, E. & Andò, S. (2007). Heavy mineral concentration in modern sands: Implications for provenance interpretation. In M. A. Mange & D. T. Wright (Eds.), Heavy Minerals in Use. Developments in Sedimentology (Vol. 58, pp. 517–545). Amsterdam: Elsevier.Google Scholar
  29. Garzanti, E., Andò, S., & Vezzoli, G. (2009). Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters, 277, 422–432.CrossRefGoogle Scholar
  30. Gaupp, R. (1983). Die paläogeographische Bedeutung der Konglomerate in den Losensteiner Schichten (Alb, Nördliche Kalkalpen). Zitteliana, 10, 155–171.Google Scholar
  31. Gruber, P. (1987). Sedimentologische und stratigraphische Untersuchungen der Gosaugruppe zwischen Puchberg/Schneeberg und Waidmannsfeld (Miesenbachtal, Niederösterreich). PhD. dissertation, University of Vienna, Vienna.Google Scholar
  32. Gruber, P., Faupl, P., & Koller, F. (1992). Zur Kenntnis basischer Vulkanitgerölle aus Gosaukonglomeraten der östlichen Kalkalpen – Ein Vergleich mit Vulkaniten aus dem Haselgebirge. Mitteilungen der Österreichischen Geologischen Gesellschaft, 84, 77–100.Google Scholar
  33. Habler, G., & Thöni, M. (2001). Preservation of Permo-Triassic low-pressure assemblages in the Cretaceous high-pressure metamorphic Saualpe crystalline basement (Eastern Alps, Austria). Journal of Metamorphic Geology, 19, 679–697.CrossRefGoogle Scholar
  34. Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., & Bernoulli, D. (2010). Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth-Science Reviews, 102, 121–158.CrossRefGoogle Scholar
  35. Harangi, S., Downes, H., Kósa, L., Szabó, C., Thirlwall, M. F., Mason, P. R. D., et al. (2001). Almandine garnet in calc-alkaline volcanic rocks of the Northern Pannonian Basin (eastern-central Europe): Geochemistry, petrogenesis and geodynamic implications. Journal of Petrology, 42, 1813–1843.CrossRefGoogle Scholar
  36. Henry, D. J., & Dutrow, B. L. (1992). Tourmaline in a low grade clastic metasedimentary rock: An example of the petrogenetic potential of tourmaline. Contributions to Mineralogy and Petrology, 112, 203–218.CrossRefGoogle Scholar
  37. Henry, D. J., & Guidotti, C. V. (1985). Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. American Mineralogist, 70, 1–15.Google Scholar
  38. Hisada, K. I., Sugiyama, M., Ueno, K., Charusiri, P., & Arai, S. (2004). Missing ophiolitic rocks along the Mae Yuam Fault as the Gondwana-Tethys divide in north-west Thailand. The Island Arc, 13, 119–127.CrossRefGoogle Scholar
  39. Hofer, G., Draganits, E., Wagreich, M., Hofmann, C. C., Reischenbacher, D., Neuhuber, S., et al. (2011). Stratigraphy and geochemical characterisation of Upper Cretaceous non-marine—marine cycles (Grünbach Formation, Gosau Group, Austria). Austrian Journal of Earth Sciences, 104, 90–107.Google Scholar
  40. Hofer, G., Wagreich, M., & Neuhuber, S. (2013). Geochemistry of fine-grained sediments of the Upper Cretaceous to Paleogene Gosau Group (Austria, Slovakia): Implications for paleoenvironmental and provenance studies. Geoscience Frontiers, 4, 449–468.CrossRefGoogle Scholar
  41. Hradecká, L., Lobitzer, H., Ottner, F., Švábenická, L., & Svobodová, M. (1999). Biostratigraphy and facies of selected exposures in the Grünbach-Neue Welt Gosau-Group (Coal-Bearing Series, Inoceramus-Marl and Zweiersdorf-Formation, Late Cretaceous and Paleocene, Lower Austria). Abhandlungen der Geologischen Bundesanstalt, 56, 519–551.Google Scholar
  42. Hubert, J. F. (1962). A zircon–tourmalin–rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Petrology, 32, 440–450.Google Scholar
  43. Kamenetsky, V. S., Crawford, A. J., & Meffre, S. (2001). Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42, 655–671.CrossRefGoogle Scholar
  44. Krenmayr, H. G. (1999). Die Nierental-Formation der Oberen Gosau Gruppe (Oberkreide-Paleozän, Nördliche Kalkalpen) in Berchtesgaden: Definition, Fazies und Environment. Jahrbuch der Geologischen Bundesanstalt, 141, 409–447.Google Scholar
  45. Kutterolf, S. (2001). Die klastischen Sedimente der karbonen Hochwipfel- und Auerning-Formation der Ostkarawanken (Österreich/Slowenien). Sedimentologie, Geochemie und Provenanz. PhD. dissertation, University of Stuttgart, Stuttgart.Google Scholar
  46. Lenaz, D., Mazzoli, C., Spišiak, J., Princivalle, F., & Maritan, L. (2009). Detrital Cr-spinel in the Šambron-Kamenica Zone (Slovakia): Evidence for an ocean-spreading zone in the Northern Vardar suture? International Journal of Earth Sciences (Geologische Rundschau), 98, 345–355.CrossRefGoogle Scholar
  47. Lužar-Oberiter, B., Mikes, T., Dunkl, I., Babić, L., & Von Eynatten, H. (2012). Provenance of Cretaceous synorogenic sediments from the NW Dinarides (Croatia). Swiss Journal of Geosciences,. doi: 10.1007/s00015-012-0107-3.Google Scholar
  48. Lužar-Oberiter, B., Mikes, T., Von Eynatten, H., & Babić, L. (2009). Ophiolithic detritus in Cretaceous clastic formations of the Dinarides (NW Croatia): Evidence from Cr-spinel chemistry. International Journal of Earth Sciences, 98, 1097–1108.CrossRefGoogle Scholar
  49. Maksimovic, Z., & Majer, V. (1981). Accessory spinels of two main zones of alpine ultramafic rocks in Yugoslawia. Bulletin of Serbian Academy of Sciences and Arts, 21, 47–58.Google Scholar
  50. Mandl, G. W. (2000). The Alpine sector of the Tethyan shelf—Examples of Triassic to Jurassic sedimentation and deformation from the Northern Calcareous Alps. Mitteilungen der Österreichischen Geologischen Gesellschaft, 92, 61–78.Google Scholar
  51. Mange, M. A. & Maurer, H. F. W. (1992). Heavy minerals in colour. London: Chapman & Hall.Google Scholar
  52. Mange, M. A. & Morton, A. C. (2007). Geochemistry of heavy minerals. In M. A. Mange & D. T. Wright (Eds.), Heavy Minerals in Use. Developments in Sedimentology (Vol. 58, pp. 345–391). Amsterdam: Elsevier.Google Scholar
  53. Meinhold, G., Kostopoulos, D., Reischmann, T., Frei, D., & BouDaher-Fadel, M. K. (2009). Geochemistry, provenance and stratigraphic age of metasedimentary rocks from the eastern Vardar suture zone, northern Greece. Palaeogeography, Palaeoclimatology, Palaeoecology, 277, 199–225.CrossRefGoogle Scholar
  54. Méres, Š. (2008). Garnets—Important information resource about source area and parental rocks of the siliciclasic sedimentary rocks. In L. Jurcovič (Ed.), Conference “Cambelove dni 2008”. Abstract Book (pp. 37–43). Bratislava: Comenius University.Google Scholar
  55. Méres, Š., Aubrecht, R., Gradziński, M., & Sýkora, M. (2012). High (ultrahigh) pressure metamorphic terrane rocks as the source of the detrital garnets from the Middle Jurassic sands and sandstones of the Cracow Region (Cracow-Wieluń Upland, Poland). Acta Geologica Polonica, 62, 231–245.CrossRefGoogle Scholar
  56. Mikes, T., Christ, D., Petri, R., Dunkl, I., Frei, D., Báldi-Beke, M., et al. (2008). Provenance of the Bosnian Flysch. Swiss Journal of Geosciences, Supplement Volume, 3, 31–54.CrossRefGoogle Scholar
  57. Mikuš, T., & Spišiak, J. (2007). Chemical composition and alteration of Cr-spinels from Meliata and Penninic serpentinized peridotites (Western Carpathians and Eastern Alps). Geological Quarterly, 51, 257–270.Google Scholar
  58. Mišík, M. (1994). Senonian continental sediments with marine intercalation (Gosau complex) in the basement of the Slovakian part of Vienna basin (borehole Gajary Ga-125). Mineralia Slovaca, 26, 297–310.Google Scholar
  59. Missoni, S., & Gawlick, H.-J. (2011). Evidence for Jurassic subduction from the Northern Calcareous Alps (Berchtesgaden; Austroalpine, Germany). International Journal of Earth Sciences, 100, 1605–1631.CrossRefGoogle Scholar
  60. Morton, A. C. (1985). A new approach to provenance studies: Electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea. Sedimentology, 32, 553–566.CrossRefGoogle Scholar
  61. Morton, A. C. (1991). Geochemical studies of detrital heavy minerals and their application to provenance research. In A. C. Morton, S. P. Todd, P. D. W. Haughton (Eds.), Developments in Sedimentary Provenance Studies (Vol. 57, pp. 31–45). London: Geology of London Special Publication.Google Scholar
  62. Morton, A. C., Allen, M., Simmons, M., Spathopoulos, F., Still, J., Hinds, D., et al. (2003). Provenance patterns in a neotectonic basin: Pliocene and Quaternary sediment supply to the South Caspian. Basin Research, 15, 321–337.CrossRefGoogle Scholar
  63. Morton, A. C. & Hallsworth, C. R. (2007). Stability of detrital heavy minerals during burial diagenesis. In M. A. Mange & D. T. Wright (Eds.), Heavy Minerals in Use. Developments in Sedimentology (Vol. 58, pp. 215–245). Amsterdam: Elsevier.Google Scholar
  64. Ortner, H. (2001). Growing folds and sedimentation of the Gosau Group, Muttekopf, Northern Calcareous Alps, Austria. International Journal of Earth Sciences, 90, 727–739.CrossRefGoogle Scholar
  65. Pavlishina, P., Verreussel, R., Leereveld, H., Summesberger, H., & Wagreich, M. (2004). Palynological study of Gosau group deposits (Upper Cretaceous) of the Northern Calcareous Alps (Austria). Annalen des Naturhistorischen Museums in Wien, 106A, 67–90.Google Scholar
  66. Petrakakis, K., & Dietrich, H. (1985). MINSORT: A program for the processing and archivation of microprobe analyses of silicate and oxide minerals. Neues Jahrbuch für Mineralogie, Monatshefte, 8, 379–384.Google Scholar
  67. Pettijohn, F. J., Potter, P. E., Siever, R. (1973). Sand and sandstones. New York: Springer.Google Scholar
  68. Plöchinger, B. (1961). Die Gosaumulde von Grünbach und der Neuen Welt. Jahrbuch der Geologischen Bundesanstalt, 104, 359–441.Google Scholar
  69. Pober, E., & Faupl, P. (1988). The chemistry of detrital chromian spinels and its implications for the geodynamic evolution of the Eastern Alps. Geologische Rundschau, 77, 641–670.CrossRefGoogle Scholar
  70. Pouchou, L. J., & Pichoir, F. (1984). A new model for quantitative X-ray microanalysis. Part 1. Applications to the analysis of homogenous samples. Recherche Aerospatiale, 3, 13–38.Google Scholar
  71. Power, M. R., Pirrie, D., Andersen, J. C. O., & Wheeler, P. D. (2000). Testing the validity of chrome spinel chemistry as a provenance and petrogenetic indicator. Geology, 28, 1027–1030.CrossRefGoogle Scholar
  72. Preston, J., Hartley, A., Mange-Rajetzky, M., Hole, M., May, G., Buck, S., et al. (2002). The provenance of Triassic continental sandstones from the Beryl Field, northern North Sea: Mineralogical, geochemical and sedimentological constraints. Journal of Sedimentary Research, 72, 18–29.CrossRefGoogle Scholar
  73. Ralbovsky, E. & Ostrolucký, P. (1996). The Glinzendorf Syncline below the Vienna Basin in Slovakia. In G. Wessely & W. Liebl (Eds.), Oil and Gas in Alpidic Thrustbelts and Basins of Central and Eastern Europe. EAGE Special Publication no. 5 (pp. 145–146). London: Geological Society.Google Scholar
  74. Sachsenhofer, R. F., & Tomschey, O. (1992). Gosau-type coals of Austria and Hungary—A preliminary geochemical comparison. Acta Geologica Hungarica, 35, 49–57.Google Scholar
  75. Sanders, D. (1998). Tectonically controlled Late Cretaceous terrestrial to neritic deposition (Northern Calcareous Alps, Tyrol, Austria). Facies, 39, 139–178.CrossRefGoogle Scholar
  76. Sauer, R. (1980). Zur Stratigraphie und Sedimentologie der Gießhübler Schichten im Bereich der Gießhübler Gosaumulde (Nördliche Kalkalpen). PhD. dissertation, University of Vienna, Vienna.Google Scholar
  77. Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., et al. (2008). The Alpine–Carpathian–Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183.CrossRefGoogle Scholar
  78. Schmid, S. M., Fügenschuh, B., Kissling, E., & Schuster, R. (2004). Tectonic map and overall architecture of the Alpine orogen. Swiss Journal of Geosciences, 07, 93–117.Google Scholar
  79. Schuster, R., & Frank, W. (1999). Metamorphic evolution of the Austroalpine units east of the Tauern Window: Indications for Jurassic strike slip tectonics. Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten in Österreich, 42, 37–58.Google Scholar
  80. Sciunnach, D., & Garzanti, E. (1997). Detrital chromian spinels record tectono-magmatic evolution from Carboniferous rifting to Permian spreading in Neotethys (India, Nepal and Tibet). Ofioliti, 22, 101–110.Google Scholar
  81. Stampfli, G. M. (2000). Tethyan oceans. In E. Bozkurt, J. A. Winchester & J. D. A. Piper (Eds.), Tectonics and magmatism in Turkey and surrounding area. Geological Society of London, Special Publication 173 (pp. 1–23). London: Geological Society.Google Scholar
  82. Stampfli, G. M., Borel, G., Marchant, R., & Mosar, J. (2002). Western Alps geological constraints on western Tethyan reconstructions. Journal Virtual Explorer, 8, 77–106.CrossRefGoogle Scholar
  83. Stattegger, K. (1986). Multivariate statistische Auswertung von Schwermineraldaten der alpinen Gosau und Bezüge zur plattentektonischen Entwicklung der Ostalpen während der Oberkreide. Geologische Rundschau, 75, 341–352.CrossRefGoogle Scholar
  84. Stattegger, K. (1987). Heavy minerals and provenance of sands: Modelling of lithological end members from river sands of northern Austria and from sandstones of the Austroalpine Gosau Formation (Late Cretaceous). Journal of Sedimentary Petrology, 57, 301–310.Google Scholar
  85. Stüwe, K., & Schuster, R. (2010). Initiation of subduction in the Alps: Continent or ocean? Geology, 38, 175–178.CrossRefGoogle Scholar
  86. Summesberger, H., Wagreich, M., Tröger, K. A., Scholger, R. (2002). The Upper Cretaceous of Piesting (Austria): Integrated stratigraphy of the Piesting Formation (Gosau Group). In M. Wagreich (Ed.), Aspects of Cretaceous Stratigraphy and Palaeobiogeography. Schriftenreihe der Erdwissenschaftlichen Kommission (Vol. 15, pp. 373–399). Vienna: Austrian Academy of Sciences Press.Google Scholar
  87. Thöni, M. (2006). Dating eclogite-facies metamorphism in the Eastern Alps—Approaches, results, interpretations: A review. Mineraology and Petrology, 88, 123–148.CrossRefGoogle Scholar
  88. Tsikouras, B., Pe-Piper, G., Piper, D. J. W., & Schaffer, M. (2011). Varietal heavy mineral analysis of sediment provenance, Lower Cretaceous Scotian Basin, eastern Canada. Sedimentary Geology, 237, 150–165.CrossRefGoogle Scholar
  89. Von Eynatten, H. (1996). Provenanzanalyse kretazischer Siliziklastika aus den Nördlichen Kalkalpen. PhD. dissertation, University of Mainz, Mainz.Google Scholar
  90. Von Eynatten, H., & Gaupp, R. (1999). Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: Constraints from framework petrography, heavy mineral analysis and mineral chemistry. Sedimentary Geology, 124, 81–111.CrossRefGoogle Scholar
  91. Wagreich, M. (1986). Schichtfolge und Fazies der Gosau von Lilienfeld (Oberkreide; niederösterreichische Kalkvoralpen). Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten in Österreich, 32, 19–38.Google Scholar
  92. Wagreich, M. (1988). Sedimentologie und Beckenentwicklung des tieferen Abschnittes (Santon-Untercampan) der Gosauschichtgruppe von Gosau und Rußbach (Oberösterreich – Salzburg). Jahrbuch der Geologischen Bundesanstalt, 131, 663–685.Google Scholar
  93. Wagreich, M. (1993a). Subcrustal tectonic erosion in orogenic belts—A model for the Late Cretaceous subsidence of the Northern Calcareous Alps (Austria). Geology, 21, 941–944.CrossRefGoogle Scholar
  94. Wagreich, M. (1993b). Serpentinitreiche Sandsteine als Anzeiger verschwundener Suturzonen am Beispiel der Oberkreide der Nördlichen Kalkalpen (Gosau-Gruppe, Österreich). Zentralblatt für Geologie und Paläontologie, Teil I, 1992, 663–673.Google Scholar
  95. Wagreich, M. (1995). Subduction tectonic erosion and Late Cretaceous subsidence along the northern Austroalpine margin (Eastern Alps, Austria). Tectonophysics, 242, 63–78.CrossRefGoogle Scholar
  96. Wagreich, M. (1998). Lithostratigraphie, Fazies und Sequenzstratigraphie der Gosau Gruppe von Bad Ischl und Strobl am Wolfgangsee (Oberturon-Maastricht, Nördliche Kalkalpen, Österreich). Jahrbuch der Geologischen Bundesanstalt, 141, 209–234.Google Scholar
  97. Wagreich, M. (2001a). Paleocene–Eocene paleogeography of the Northern Calcareous Alps (Gosau Group, Austria). In W. E. Piller & M. W. Rasser (Eds.), Paleogene of the Eastern Alps. Schriftenreihe der Erdwissenschaftlichen Kommission (Vol. 14, pp. 57–75). Vienna: Austrian Academy of Sciences Press.Google Scholar
  98. Wagreich, M. (2001b). A 400-km-long piggyback basin (Upper Aptian-Lower Cenomanian) in the Eastern Alps. Terra Nova, 13, 401–406.CrossRefGoogle Scholar
  99. Wagreich, M. (2003). A slope-apron succession filling a piggyback basin: The Tannheim and Losenstein Formations (Aptian – Cenomanian) of the eastern part of the Northern Calcareous Alps (Austria). Mitteilungen der Geologischen Gesellschaft in Wien, 93, 31–54.Google Scholar
  100. Wagreich, M., & Decker, K. (2001). Sedimentary tectonics and subsidence modelling of the type Upper Cretaceous Gosau basin (Northern Calcareous Alps, Austria). International Journal of Earth Sciences, 90, 714–726.CrossRefGoogle Scholar
  101. Wagreich, M., & Faupl, P. (1994). Palaeogeography and geodynamic evolution of the Gosau Group of the Northern Calcareous Alps (Late Cretaceous, Eastern Alps, Austria). Palaeogeography, Palaeoclimatology, Palaeoecology, 110, 235–254.CrossRefGoogle Scholar
  102. Wagreich, M., Ilickovic, T., Popovic, A., Porpaczy, C., Steinbrener, J., & Wessely, G. (2011). Biostratigraphy and sedimentology of Campanian deep-water sections (Nierental Formation, Gosau Group) in Lower Austria. Austrian Journal of Earth Sciences, 104, 108–121.Google Scholar
  103. Wagreich, M., & Krenmayr, H. G. (2005). Upper Cretaceous oceanic red beds (CORB) in the Northern Calcareous Alps (Nierental Formation, Austria): Slope topography and clastic input as primary controlling factors. Cretaceous Research, 26, 57–64.CrossRefGoogle Scholar
  104. Wagreich, M., & Marschalko, R. (1995). Late Cretaceous to Early Tertiary palaeogeography of the Western Carpathians (Slovakia) and the Eastern Alps (Austria): Implications from heavy mineral data. Geologische Rundschau, 84, 187–199.CrossRefGoogle Scholar
  105. Weltje, G. J., & Von Eynatten, H. (2004). Quantitative provenance analysis of sediments: Review and outlook. Sedimentary Geology, 171, 1–11.CrossRefGoogle Scholar
  106. Wessely, G. (1974). Rand und Untergrund des Wiener Beckens – Verbindungen und Vergleiche. Mitteilungen der Geologischen Gesellschaft in Wien, 66–67, 265–287.Google Scholar
  107. Wessely, G. (1984). Der Aufschluß auf kalkalpine und subalpine Tiefenstrukturen im Untergrund des Wiener Beckens. The exploration to limestone-alpine deep structures in the basement of the Vienna basin. Erdoel-Erdgas, 100, 285–292.Google Scholar
  108. Wessely, G. (1992). The calcareous alps below the Vienna basin in Austria and their structural and facial development in the alpine-carpathian border zone. Geologica Carpathica, 43, 347–353.Google Scholar
  109. Wessely, G. (1993). Der Untergrund des Wiener Beckens. In F. Brix & O. Schultz (Eds.), Erdöl und Erdgas in Österreich (pp. 249–280). Wien: Naturhistorisches Museum Wien.Google Scholar
  110. Wessely, G. (2000). Sedimente des Wiener Beckens und seiner alpinen und subalpinen Unterlagerung. The Vienna Basin and its alpine and subalpine basement. Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten in Österreich, 44, 191–214.Google Scholar
  111. Wessely, G. (2006). Niederösterreich. Geologie der österreichischen Bundesländer. Wien: Geologische Bundesanstalt.Google Scholar
  112. Wessely, G., Kröll, A., Jiřiček, R., Němec, F. (1993). Wiener Becken und angrenzende Gebiete. Geologische Bundesanstalt (Ed.) Geologische Einheiten des präneogenen Beckenuntergrundes. Geological map 1:200.000, Wien.Google Scholar
  113. Winkler, W. (1988). Mid- to early Late Cretaceous flysch and melange formations in the western part of the Eastern Alps. Paleotectonic implications. Jahrbuch der Geologischen Bundesanstalt, 131, 341–389.Google Scholar
  114. Woletz, G. (1967). Schwermineralvergesellschaftungen aus ostalpinen Sedimentationsbecken der Kreidezeit. Geologische Rundschau, 56, 308–320.CrossRefGoogle Scholar
  115. Wright, W. I. (1938). The composition and occurrence of garnets. American Mineralogist, 23, 436–449.Google Scholar
  116. Zimmer, W. & Wessely, G. (1996). Exploration results in thrust and subthrust complexes in the Alps and below the Vienna Basin in Austria. In G. Wessely & W. Liebl (Eds.), Oil and Gas in Alpidic Thrustbelts and Basins of Central and Eastern Europe. EAGE Special Publication no. 5 (pp. 81–107). London: Geological Society.Google Scholar
  117. Zimmerle, W. (1984). The geotectonic significance of detrital brown spinel in sediments. Mitteilungen des Geologisch-Paläontologischen Instituts der Universität Hamburg, 56, 337–360.Google Scholar

Copyright information

© Swiss Geological Society 2013

Authors and Affiliations

  1. 1.Department of Geodynamics and SedimentologyUniversity of ViennaViennaAustria

Personalised recommendations