Advertisement

Swiss Journal of Geosciences

, Volume 106, Issue 2, pp 161–177 | Cite as

New coelacanth material from the Middle Triassic of eastern Switzerland, and comments on the taxic diversity of actinistans

  • Lionel Cavin
  • Heinz Furrer
  • Christian Obrist
Article

Abstract

New coelacanth material from the Middle Triassic Prosanto Formation of the Ducan and Landwasser area near Davos in eastern Switzerland, Canton Graubünden, is described. A sub-complete individual is visible in ventral view, and shows details of its branchial apparatus. In particular, it possesses relatively large teeth on the ceratobranchials, and possible ossified hypobranchials. Few diagnostic characters are observable, and most of them are visible on the mandibles preserved in lateral view. This specimen shares characters with Ticinepomis peyeri, a smaller form from the Middle Triassic of Monte San Giorgio, whose holotype is re-described in part here. A second specimen, a fragmentary caudal skeleton shows the typical supplementary lobe of coelacanths, and meristic characters indicating probable close affinities with T. peyeri. We refer this material to Ticinepomis cf. T. peyeri. Because the new specimen is larger than the holotype, we refute the possible juvenile status of the small specimen from Monte San Giorgio. The new material of Ticinepomis from Canton Graubünden shows anatomical features not preserved on the holotype and allows the addition of new characters to a previously published data matrix of actinistians. A phylogenetic analysis is performed, which supports that Ticinepomis is nested among the Latimeriidae. The diversity of post-Palaeozoic coelacanths is assessed. The taxic diversity of observed occurrences shows a peak in the Early Triassic and a peak in the Late Jurassic, as detected in previous studies. When ghost lineages are included in the computation, the Late Jurassic peak is smoothened. By comparing the taxic diversity curves with the curve of average ghost lineage duration, we conclude that the Early Triassic peak of diversity was probably caused by a biological radiation, whereas the Late Jurassic peak of observed diversity is probably the result of a Lagerstätten effect.

Keywords

Prosanto Formation Ladinian Phylogeny Taxic diversity Branchial apparatus 

Institutional and anatomical abbreviations

PIMUZ

Collection of the Palaeontological Institute and Museum, University of Zürich

Ang

Angular

a.Pa

Anterior parietal

Apal

Autopalatine

Art

Articular

art.fa

Articular facet

ax.mes

Axial mesomeres

Bb

Basibranchial

b.fen

Basicranial Fenestra

Boc

Basioccipital

Bs

Basisphenoid

Cb

Ceratobranchial (numbered)

Ch

Ceratohyal

Cl

Cleithrum

Cla

Clavicle

Co

Coronoid (numbered)

De

Dentary

Dpal

Dermopalatine

d.p

Enlarged sensory pore within dentary

D1.b

Basal bone of the first dorsal fin

d1.f

First dorsal fin

D2.b

Basal bone of the second dorsal fin

d2.f

Second dorsal fin

Ecl

Extracleithrum

Exo

Exoccipital

f.pop.sc

Foramen for the preopercular sensory canal

f.VII.m.ext

External mandibular ramus of the VII

Gu

Gular

h.a + s

Haemal arch and spine

Hb

Hypobranchial

Ih

Interhyal

n.a + s

Neural arch and spine

Op

Opercle

ot.sh

Otic shelf

Part

Prearticular

Pb

Pharyngobranchial

P.b

Pelvic bone

P.Co

Principal coronoid

Pmx

Premaxilla

Ppa

Postparietal

p.Pa

Posterior parietal

Pop

Preopercle

Ps

Parasphenoid

Pt

Pterygoid

p.w.Pro

Posterior wing of the prootic

pec.f

Pectoral fin

Q

Quadrate

Ra

Radial

Rart

Retroarticular

ros.m

Median rostral

ros.l

Lateral rostral

Sb

Suprapharyngobranchial

Sc

Scale

Scc

Scapulocoracoid

s.l.c.f

Supplementary lobe of the caudal fin

So

Supraorbital

Sop

Subopercle

sop.br

Subopercular branch of the preopercular canal

Spl

Splenial

Stt

Supratemporal

Sy

Symplectic

T

Tooth

t.p.Bb

Basibranchial tooth plates

t.p.Cb

Ceratobranchial tooth plates

Uhy

Urohyal

v.pr.Pa

Ventral process of the posterior parietal

IX

Glossopharyngeal foramen

(l) and (r)

Refer to ossifications from the left and right side of the specimen, respectively

Notes

Acknowledgments

This article is dedicated to our friend and colleague, the late Prof. Jean-Pierre Berger, for his important research in the field of palaeontology, and for spreading the palaeontological science to a broad audience. The Palaeontological Institute and Museum, University of Zürich (PIMUZ) enabled H.F. the systematic prospection and numerous excavations near Davos. The government of Canton Graubünden, and the Bündner Naturmuseum in Chur gave the permission for the excavations and financial support. Markus Hebeisen (PIMUZ) carefully prepared the first specimen (caudal fin). Max Kuhn (Uster) provided generous financial support for the preparation of the second, sub-complete specimen by C.O. This study was partly funded by the Swiss National Science Foundation for LC (200021-140827). We thank Isabelle Santoro and Colette Hamard, from the Musée d’Art et d’Histoire de la Ville de Genève, for the X-rays photographs of a specimen. We also thank Marius Hublard (Ilanz) and Benjamin Jost (Zürich), who drawed the geological figures, as well as Laura Wilson (University of New South Wales, Kensington NSW 2052, Australia) who improved the English, Hugo Dutel (Paris) and an anonymous reviewer, who provided valuable comments and critics, as well as Daniel Marty for his editorial work.

Supplementary material

15_2013_143_MOESM1_ESM.doc (72 kb)
Supplementary material 1 (DOC 72 kb)

References

  1. Anthony, J., & Robineau, D. (1976). Sur quelques caractères juvéniles de Latimeria chalumnae Smith (Pisces, Crossopterygii, Coelacanthidae). Comptes Rendus de l’Académie des Sciences, Paris Série D, 283, 1739–1742.Google Scholar
  2. Arratia, G., & Herzog, A. (2007). A new halecomorph fish from the Middle Triassic of Switzerland and its systematic implications. Journal of Vertebrate Paleontology, 27, 838–849.CrossRefGoogle Scholar
  3. Arratia, G., Schultze, H.-P., & Casciotta, J. (2001). Vertebral column and associated elements in Dipnoans and comparison with other fishes: development and homology. Journal of Morphology, 250, 101–172.CrossRefGoogle Scholar
  4. Bassani, F. (1896). L’ittiofana della Dolomia Principale di Giffoni. Palaeontographia italica, 1, 169–210.Google Scholar
  5. Bellotti, C. (1857). Descrizione di alcune nuove specie di pesci fossili di Perledo e d’altre località lombarde. In A. Stoppani (Ed.), Studi geologici e paleontologici sulla Lombardia (pp. 419–438). Milano.Google Scholar
  6. Beltan, L. (1972). La faune ichthyologique du Muschelkalk de la Catalogne. Memorias de la Real Academia de Ciencias y Artes de Barcelona, Tercera Epoca, 41, 280–325.Google Scholar
  7. Brito, P. M., & Martill, D. M. (1999). Discovery of a juvenile coelacanth in the lower Cretaceous, Crato formation, Northeastern Brazil. Cybium, 23, 311–314.Google Scholar
  8. Bürgin, T. (1999). Middle Triassic marine fish faunas from Switzerland. In G. Arratia & H.-P. Schultze (Eds.), Mesozoic Fishes 2: Systematics and the Fossil Record (pp. 481–494). München: Verlag Dr. Friedrich Pfeil.Google Scholar
  9. Bürgin, T., Eichenberger, U., Furrer, H., & Tschanz, K. (1991). Die Prosanto-Formation—eine fischreiche Fossil-Lagerstätte in der Mitteltrias der Silvretta-Decke (Kanton Graubünden, Schweiz). Eclogae Geologicae Helvetiae, 84, 921–990.Google Scholar
  10. Bürgin, T., & Herzog, A. (2002). Die Gattung Ctenognathichthys (Actinopterygii; Perleidiformes) aus der Prosanto-Formation (Ladin, Mitteltrias) Graubündens (Schweiz), mit der Beschreibung einer neuen Art, C. hattichi sp. nov. Eclogae Geologicae Helvetiae, 95, 461–469.Google Scholar
  11. Cavin, L. (2010). The Late Jurassic ray-finned fish peak of diversity: biological radiation or preservational bias? In J. S. Nelson, H.-P. Schultze, & M. V. H. Wilson (Eds.), Origin and phylogenetic interrelationships of teleosts honoring Gloria Arratia (pp. 111–121). München: Verlag Dr. Friedrich Pfeil.Google Scholar
  12. Cavin, L., & Forey, P. L. (2007). Using ghost lineages to identify diversification events in the fossil record. Biology Letters, 3, 201–204.CrossRefGoogle Scholar
  13. Cavin, L., & Kemp, A. (2011). The impact of fossils on the evolutionary distinctiveness and conservation status of the Australian lungfish. Biological Conservation, 144, 3140–3142.CrossRefGoogle Scholar
  14. Clément, G. (2005). A new coelacanth (Actinistia, Sarcopterygii) from the Jurassic of France, and the question of the closest relative fossil to Latimeria. Journal of Vertebrate Paleontology, 25, 281–291.CrossRefGoogle Scholar
  15. Cloutier, R. (1991). Patterns, trends, and rates of evolution within the Actinistia. Environmental Biology of Fishes, 32, 23–58.CrossRefGoogle Scholar
  16. Cloutier, R. (2010). The fossil record of fish ontogenies: insights to developmental patterns and processes. Seminars in Cell and Developmental Biology, 21, 400–413.CrossRefGoogle Scholar
  17. Costa, O. G. (1862). Studii sopra i terreni ad ittioliti del Regno di Napoli. Estratti dall’appendice agli atti della R. Accademia delle Scienze di Napoli, 12, 1–44.Google Scholar
  18. Dutel, H., Maisey, J. G., Schwimmer, D. R., Janvier, P., Herbin, M., & Clément, G. (2012). The giant Cretaceous Coelacanth (Actinistia, Sarcopterygii) Megalocoelacanthus dobiei Schwimmer, Stewart and Williams, 1994, and its bearing on Latimerioidei interrelationships. PLoS ONE, 7, e49911. doi: 10.1371/journal.pone.0049911.CrossRefGoogle Scholar
  19. Forey, P. L. (1981). The coelacanth Rhabdoderma in the Carboniferous of the British Isles. Palaeontology, 24, 203–229.Google Scholar
  20. Forey, P. L. (1998). History of the coelacanth fishes (p. 419). London: Chapman and Hall.Google Scholar
  21. Fraser, N.C., Furrer, H.A. (2013). New species of Macrocnemus from the Middle Triassic of the Eastern Swiss Alps. Swiss Journal of Geosciences. doi: 10.1007/s00015-013-0137-5.
  22. Friedman, M., & Coates, M. I. (2006). A new recognized fossil coelacanth highlights the early morphological diversification of the clade. Proceedings of the Royal Society, Series B, 273, 245–250.CrossRefGoogle Scholar
  23. Furrer, H. (1995). The Prosanto Formation, a marine Middle Triassic Fossil-Lagerstätte near Davos (Canton Graubünden, Eastern Swiss Alps). Eclogae Geologicae Helvetiae, 88, 681–683.Google Scholar
  24. Furrer, H. (2009). So kam der Fisch auf den Berg—Eine Broschüre über die Fossilfunde am Ducan. Bündner Naturmuseum Chur und Paläontologisches Institut und Museum Universität Zürich, 2. aktualisierte Auflage (pp. 32).Google Scholar
  25. Furrer, H., Eichenberger, U., Froitzheim, U., & Wurster, D. (1992). Geologie, Stratigraphie und Fossilien der Ducankette und des Landwassergebiets (Silvretta-Decke, Ostalpin). Eclogae Geologicae Helvetiae, 85, 245–256.Google Scholar
  26. Furrer, H., Schaltegger, U., Ovtcharova, M., & Meister, P. (2008). U-Pb zircon age of volcanic layers in Middle Triassic platform carbonates of the Austroalpine Silvretta nappe (Switzerland). Swiss Journal of Geosciences, 101, 595–603.CrossRefGoogle Scholar
  27. Geng, B.-H., Zhu, M., & Jin, F. (2009). A revision and phylogenetic analysis of Guizhoucoelacanthus (Sarcopterygii, Actinistia) from the Triassic of China. Vertebrata PalAsiatica, 47, 311–329.Google Scholar
  28. Grauvogel-Stamm, L., Meyer-Berthaud, B., & Vozenin-Serra, C. (2003). Conifer axes from the Middle Triassic of Switzerland: structure and affinities. Courier Forschungsinstitut Senckenberg, 241, 51–67.Google Scholar
  29. Herzog, A. (2001). Peltoperleidus obristi sp. nov., ein neuer, kleiner Strahlenflosser (Actinopterygii, Perleidiformes) aus der Prosanto-Formation (Mitteltrias) von Graubünden (Schweiz). Eclogae Geologicae Helvetiae, 94, 495–507.Google Scholar
  30. Herzog, A. (2003a). Eine Neubeschreibung der Gattung Eoeugnathus Brough, 1939 (Actinopterygii; Halecomorphi) aus der alpinen Mitteltrias Graubündens (Schweiz). Paläontologische Zeitschrift, 77, 201–218.CrossRefGoogle Scholar
  31. Herzog, A. (2003). Die Knochenfische der Prosanto-Formation (Mitteltrias, GR)—Systematik, Funktionsmorphologie und Paläoökologie. PhD Dissertation (pp. 330). Zürich: Universität Zürich.Google Scholar
  32. Johanson, Z., Long, J., Talent, J., Janvier, P., & Warren, J. (2006). Oldest coelacanth, from the Early Devonian of Australia. Biology Letters, 2, 443–446.CrossRefGoogle Scholar
  33. Maddison, D. R. (1991). The discovery and importance of multiple islands of most-Parsimonious trees. Systematic Zoology, 40, 315–328.CrossRefGoogle Scholar
  34. Martin, M., & Wenz, S. (1984). Découverte d’un nouveau Coelacanthidé, Garnbergia ommata n.g., n.sp., dans le Muschelkalk supérieur du Baden-Württemberg. Stuttgarter Beiträge zur Naturkunde. Serie B (Geologie und Paläontologie), 105, 1–17.Google Scholar
  35. Reis, O. M. (1888). Die Coelacanthinen, mit besonderer Berücksichtigung der im Weissen Jura Bayerns vorkommenden Gattungen. Palaeontographica, Stuttgart, 35, 1–96.Google Scholar
  36. Rieppel, O. (1980). A new coelacanth from the Middle Triassic of Monte San Giorgio, Switzerland. Eclogae Geologicae Helvetiae, 73, 921–939.Google Scholar
  37. Rieppel, O. (1985). A second actinistian from the Middle Triassic of Monte San Giorgio, Kt. Tessin, Switzerland. Eclogae Geologicae Helvetiae, 78, 707–713.Google Scholar
  38. Schaeffer, B., & Gregory, J. T. (1961). Coelacanth fishes from the continental Triassic of the western United States. American Museum Novitates, 2036, 1–18.Google Scholar
  39. Scheyer, T. M., & Desojo, J. B. (2011). Palaeohistology and external microanatomy of rauisuchian osteoderms (Archosauria: Pseudosuchia). Palaeontology, 54, 1–14.CrossRefGoogle Scholar
  40. Schultze, H.-P. (1972). Early growth stages in coelacanth fishes. Nature, 23, 90–91.Google Scholar
  41. Schultze, H.-P. (1980). Eier legende und lebend gebärende Quastenflosser. Natur und Museum, 110, 101–108.Google Scholar
  42. Schultze, H.-P. (2004). Mesozoic sarcopterygians. In G. Arratia & A. Tintori (Eds.), Mesozoic fishes 3—systematics, paleoenvironments and biodiversity (pp. 463–492). München: Verlag Dr. Friedrich Pfeil.Google Scholar
  43. Schweizer, R. (1966). Ein Coelacanthide aus dem Oberen Muschelkalk Göttingens. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 125, 216–226.Google Scholar
  44. Smith, J. L. B. (1939). A living fish of Mesozoic type. Nature, 143, 455–456.CrossRefGoogle Scholar
  45. Stockar, R., Baumgartner, P., & Condon, D. (2012). Integrated Ladinian biochronostratigraphy and geochrononology of Monte San Giorgio (Southern Alps, Switzerland). Swiss Journal of Geosciences, 105, 85–108.CrossRefGoogle Scholar
  46. Swofford, D. L. (2001). PAUP*: phylogenetic analysis using parsimony and other methods (software). Sunderland: Sinauer Associates.Google Scholar
  47. Watson, D. M. S. (1927). The reproduction of the coelacanth fish, Undina. Proceedings of the Zoological Society of London, 1927, 453–457.Google Scholar
  48. Wen, W., Zhang, Q.-Y., Hu, S.-X., Benton, M. J., Zhou, C.-Y., Tao, X., et al. (2013). Coelacanths from the Middle Triassic Luoping Biota, Yunnan, South China, with the earliest evidence of ovoviviparity. Acta Palaeontologica Polonica, 58, 175–193. doi: 10.4202/app.2011.0066.Google Scholar
  49. Wendruff, A. J., & Wilson, M. V. H. (2012). A fork-tailed coelacanth, Rebellatrix divaricerca, gen. et sp. nov. (Actinistia, Rebellatricidae, fam. nov.), from the lower Triassic of Western Gondwana. Journal of Vertebrate Paleontology, 32, 499–511.CrossRefGoogle Scholar
  50. Witzmann, F., Dorka, M., & Korn, D. (2010). A juvenile Early Carboniferous (Viséan) coelacanth from Rösenbeck (Rhenish Mountains, Germany) with derived postcranial characters. Fossil Record, 13, 309–316.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2013

Authors and Affiliations

  1. 1.Department of Geology and PalaeontologyMuséum d’Histoire NaturelleGeneva 6Switzerland
  2. 2.Paläontologisches Institut und Museum der Universität ZürichZurichSwitzerland
  3. 3.RickenbachSwitzerland

Personalised recommendations