Swiss Journal of Geosciences

, Volume 106, Issue 1, pp 91–107 | Cite as

Growth-strata geometry in fault-propagation folds: a case study from the Gafsa basin, southern Tunisian Atlas

Article

Abstract

The structural and sedimentological study of fault-propagation folds in Southern Tunisia highlights a special geometry of the growth strata (strata deposited simultaneously with the formation or growth of a fold). This distinct geometry is visible in the uppermost growth-strata beds and consists of one flank with unconformity as opposed to the other flank with perfect conformity. This geometry can be explained by the mechanism of fault-propagation folding, with asymmetrical flank dips and hinge migration kinematics. This kinematics was originally predicted by the fault-propagation fold model, which facilitates the study of this special geometry in a narrow domain of sedimentation-to-shortening ratios. A plot projection provides a generalisation of the results of all types of fault-propagation folds by revealing the expected geometry of the growth strata. This study constitutes one of the most complete examples of kinematic model validation on a field scale.

Keywords

Tunisian Atlas Fold mechanisms Fault-related folding Growth-strata Fold hinge migration 

Supplementary material

15_2013_122_MOESM1_ESM.jpg (1013 kb)
Detailed geological map of Gafsa basin (JPEG 1013 kb)
15_2013_122_MOESM2_ESM.jpg (2.3 mb)
Detailed correlation of southern Sehib and Khasfa growth-strata logs. Facies interpretation made it possible to distinguish climate changes and to establish climatic correlation of the main Neogene crises (Messinian and Villafranchian). Alluvial sequences stacking based on grain size analysis indicates tectonic activities in a constant base level condition. Sea level variation and glacial maximum are from Van Vliet-Lanoë (2005) (JPEG 2311 kb)
15_2013_122_MOESM3_ESM.jpg (1.2 mb)
Photography and interpretation of deformed Recent encrusted pediments. Pediment number one has been dated at 160 ka BP using archaeological tools (Ben Ouezdou 1989) and 150 ka BP using Ur/Th radiometry (Swezey 1996) (JPEG 1212 kb)

References

  1. Addoum, B. (1995). L’Atlas Saharien Sud-oriental: Cinématique des plis-chevauchements et reconstitution du bassin du Sud-Est Constantinois (confins algéro-tunisiens). Thèse de Doctorat ès Science, Université de Paris XI Orsay.Google Scholar
  2. Ahmadi, R. (2006). Utilisation des marqueurs morphologiques, sédimentologiques et microstructuraux pour la validation des modèles cinématiques de plissement. Application à l’Atlas méridional tunisien. PhD Sciences de la Terre, Faculté des Sciences et Technique de Nantes, Université de Nantes.Google Scholar
  3. Ahmadi, R., Ouali, J., Mercier, E., Mansy, J. L., Van Vliet Lanoë, B., Launeau, P., et al. (2006). The geomorphologic imprints of hinge migration in the fault-related folds. A case study in southern Tunisian Atlas. Journal of Structural Geology, 28, 721–728.CrossRefGoogle Scholar
  4. Ben Ayed, N. (1986). Évolution tectonique de l’avant-pays de la chaîne alpine de Tunisie du début du Mésozoïque à l’Actuel. Thèse d’État, Université Paris 11.Google Scholar
  5. Ben Ouezdou, H. (1989). Sur l’hypothèse de la mer saharienne Quaternire: analyse du contexte géomorphologique et géologique de l’évolution récente des chotts algéro-tunisiens et du seuil d’Ouedref. Compte Rendue de l’Académie des Sciences, Paris, T 308(II), 767–772.Google Scholar
  6. Ben Ouezdou, H. (1994). La partie méridionale des steppes tunisienne. Etude géomorphologique. Thèse Doctorat d’Etat en Géographie Physique, Faculté des Sciences Humaines et Sociales, Univercité de Tunis I, Tunis.Google Scholar
  7. Bernal, A., & Hardy, S. (2002). Syn-tectonic sedimentation associated with three-dimensional fault-bend fold structure: a numerical approach. Journal of Structural Geology, 24, 609–635.CrossRefGoogle Scholar
  8. Bouaziz, S. (1995). Etude de la tectonique cassante dans la Plate-forme et l’Atlas Saharien (Tunisie méridionale): Evolution des paléochamps de contraintes et implications géodynamiques. Thèse de Doctorat Es-Scienceis, Faculté des Scinece de Tunis, Univercité de Tunis II.Google Scholar
  9. Bouaziz, S., Barrier, E., Soussi, M., Turki, M. M., & Zouari, H. (2002). Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics, 357, 227–253.CrossRefGoogle Scholar
  10. Combourieu-Nebout, N., Fauquette, S., & Quézel, P. (2000). What was the late Pliocene Mediterranean climate like: a preliminary quantification from vegetation. Bulletin de la Société Géologique de France, 171, 271–277.CrossRefGoogle Scholar
  11. Creuzot, G., Mercier, E., Ouali, J., & Tricart, P. (1993). La tectogenèse atlasique en Tunisie centrale: Apport de la modélisation géométrique. Eclogae Geologicae Helvetiae, 86(2), 609–627.Google Scholar
  12. Delteil, J. (1982). Le cadre néotectonique de la sedimentation plio-quaternaire en Tunisie centrale et aux îles Kerkennah. Bulletin de la Société Géologique de France, 2, 187–193.Google Scholar
  13. Dlala, M., & Hfaiedh, M. (1993). Le séisme du 7 Novembre 1989 à Metlaoui (Tunisie Méridionale): une tectonique active en compression. Compte Rendu de l’Académie des Sciences Paris, 317(II), 1297–1307.Google Scholar
  14. Epard, J. L., & Groshong, R. H, Jr. (1995). Kinematic model of detachment folding including limb rotation, fixed hinges and layer-parallel strain. Tectonophysics, 247, 85–103.CrossRefGoogle Scholar
  15. Ford, M., Williams, E. A., Artoni, A., Vergès, J., & Hardy, S. (1997). Progressive evolution of a fault-related fold pair from growth-strata geometries, Sant Llorenç de Morunys, SE Pyrenees. Journal of structural Geology, 19(3-4), 413–441.CrossRefGoogle Scholar
  16. Frizon de Lamotte, D., Leturmy, P., Missenard, Y., Khomsi, S., Ruiz, G., Saddiki, O., et al. (2009). Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): an overview. Tectonophysics, 475, 9–28.CrossRefGoogle Scholar
  17. Frizon de Lamotte, D., Saint Bezar, B., Bracene, R., & Mercier, E. (2000). The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics, 19(4), 740–761.CrossRefGoogle Scholar
  18. Grando, G., & McClay, K. (2004). Structural evolution of the Frampton growth fold system, Atwater valley-southern Green Canyon area, deep water Gulf of Mexico. Marine and Petroleum Geology, 21, 889–910.CrossRefGoogle Scholar
  19. Hardy, S. (1997). A velocity description of constant-thickness fault-propagation folding. Journal of Structural Geology, 19(6), 893–896.CrossRefGoogle Scholar
  20. Hardy, S., & Poblet, J. (1994). Geometric and numerical model of progressive limb rotation: in detachment folds. Geology, 22, 371–374.CrossRefGoogle Scholar
  21. Hlaiem, A. (1999). Halokinisis and structural evolution of the major features in eastern and southern Tunisian Atlas. Tectonophysics, 306, 79–95.CrossRefGoogle Scholar
  22. Homza, T. X., & Wallace, W. K. (1995). Geometric and kinematic models for detachment folds with fixed and variable detachment depths. Journal of Structural Geology, 17, 575–588.CrossRefGoogle Scholar
  23. Letouzeu, J., & Trémolières, P. (1980). Paleostress fields around the Mediterranean since the Mesozoïc derived from microtectonics: comparison with plate tectonics data. In: Edition du Bureau de Recherches Géologiques et Minières (BRGM), 26ème Congrès Géologique International, Colloque CS, pp. 261–268.Google Scholar
  24. Livio, A., Berlusconi, A., Alessandro, M., Michetti, A., Sileo, G., Zerboni, A., et al. (2009). Active fault-related folding in the epicentral area of the December 25, 1222 (Io = IX MCS) Brescia earthquake (northern Italy): seismotectonic implications. Tectonophysics, 476, 320–335.CrossRefGoogle Scholar
  25. Mannaï-Tayech, B., & Otero, O. (2005). Un nouveau gisement miocène à ichthyofaune au sud de la chaîne des Chotts (Tunisie méridionale). Paléoenvironnement et paléobiogéographie. Comptes Rendus Palevol, 4, 405–412.CrossRefGoogle Scholar
  26. Martinez, C., Andrieux, J., Truillet, R., & Ben Jemiaa, M. (1990). Les structures synsédimentaires miocènes en compression associées au décrochement dextre Mrhila-Chérichira (Tunisie oentrale). Bulletin de la Société Géologique de France, 10, 141–161.Google Scholar
  27. Mercier, E. (1995). Les plis de propagations de rampes: cinématique, modélisation et importance dans la tectogenése. Habilitation à diriger les recherches. Univercité de Cergy-PontoiseGoogle Scholar
  28. Mercier, E., Rafini, S., & Ahmadi, R. (2007). Folds kinematics in “folds and thrust belts” The “hinge migration” question. A review. Thrust belts and foreland basins part IV. Structural modeling/restoration. Berlin: Springer.Google Scholar
  29. Meulenkamp, J. E., & Sissingh, W. (2003). Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri–Tethys platforms and the intermediate domains of the African–Eurasian convergent plate boundary zone. Palaeogeography Palaeoclimatology Palaeoecology, 196, 209–228.CrossRefGoogle Scholar
  30. Muller, K., & Suppe, J. (1997). Growth of Wheeler Ridge anticline, California: geomorphic evidence for fault-bend folding behaviour during earthquakes. Journal of Structural Geology, 19(34), 383–396.CrossRefGoogle Scholar
  31. Ouali, J. A. (1984). Structure et géodynamique du chaînon Nara-Sidi Khalif (Tunisie centrale). Bulletin des Centres de Recherches Exploration (Elf-Aquitaine, Pau), 9, 155–182.Google Scholar
  32. Ouali, J. A. (2007). Importance du réseau rhégmatique dans la tectogenèse de la Tunisie atlasique à travers l’étude de l’axe Nord-Sud. Tunis: HDR, Université de Tunis, El Manar Faculté des Sciences de Tunis.Google Scholar
  33. Outtani, F., Addoum, B., Mercier, E., de Frizon Lamotte, D., & Andrieux, J. (1995). Geometry and kinematics of the south Atlas front, Algeria and Tunisia. Tectonophysics, 249, 233–248.CrossRefGoogle Scholar
  34. Patriat, M., Ellouze, N., Dey, Z., Gautier, G. M., & Ben Kilani, H. (2003). The Hammamet, Gabés and Chotts basins (Tunisia): a review of the subsidence history. Sedimentary Geology, 156, 241–262.CrossRefGoogle Scholar
  35. Petit-Maire, N., Bouysse, P., De Beaulieu, J.L., Boulton, N.G., Iriondo, M., Kershaw, P., Lisitsyna, O., Partridge, T., Pflaumann, U., Sarnthein, M., Schulz, H., Soons, J., Van Vliet-Lanoë, B., Yuan, B., Guo, Z., Van Der Zijp, M., Atalay, I., Kuzucuoglu, C., Lezine, A.M., Zhuo, Z., Porter, S., Runge, J. (1999). Cartes des environnements du monde pendant les deux derniers extrêmes climatiques: 1- Le dernier maximum glacière (ca 18000 +- 1000 ans B.P); 2- L’optimum holocène (ca 8000 +- 1000 ans B.P.). Commission de la carte géologique du monde, France.Google Scholar
  36. Piqué, A., Tricart, P., Guiraud, R., Laville, E., Bouaziz, S., Amrhar, M., et al. (2002). The Mesozoic–Cenozoic Atlas belt (North Africa): an overview. Geodinamica Acta, 15(3), 185–208.Google Scholar
  37. Poblet, J., & Hardy, S. (1995). Reverse modelling of detachment folds; application to the Pico del Aguila anticline in the South Central Pyrennes (Spain). Journal of Structural Geology, 17, 1707–1724.CrossRefGoogle Scholar
  38. Poblet, J., & McClay, K. (1996). Geometry and kinematics of single-layer detachment folds. American Association of Petroleum Geologists Bulletin, 80(7), 1085–1109.Google Scholar
  39. Rafini, S., & Mercier, E. (2002). Forward modelling of foreland basins progressive unconformities. Sedimentary Geology, 146, 75–89.CrossRefGoogle Scholar
  40. Riba, O. (1976). Tectonogenèse et sédimentation: deux modèles de discordances syntectoniques pyrénéennes. Bulletin du Bureau de Recherches Géologiques et Minières (BRGM) (2ème série), 1(4), 383–401.Google Scholar
  41. Riley, P., Gordon, C., Simo, J. A., Tikoff, B., & Soussi, M. (2011). Structure of the Alima and associated anticlines in the foreland basin of the southern Atlas Mountains, Tunisia. Lithosphere, 3(1), 76–91.CrossRefGoogle Scholar
  42. Rouchy, J. M. (1999). Un évènement exceptionnel: la crise de salinité messinienne de Méditerranée. In H.-J. Schubnel & F. Fröhlich (Eds.), Les âges de la terre (pp. 104–108). Paris: Muséum national d’histoire naturelle.Google Scholar
  43. Salvini, F., & Storti, F. (2002). Three-dimensional architecture of growth-strata associated to fault-bend, fault-propagation, and decollement anticlines in non-erosional environments. Sedimentary Geology, 146, 57–73.CrossRefGoogle Scholar
  44. Salvini, F., Storti, F., & McClay, K. (2001). Self-determining numerical modeling of compressional fault-bend folding. Geology, 29, 839–842.CrossRefGoogle Scholar
  45. Shaw, J. H., & Suppe, J. (1994). Active faulting and growth folding in the eastern Santa Barbara Channel, California. Geological Society of America Bulletin, 106, 607–626.CrossRefGoogle Scholar
  46. Storti, F., & Poblet, J. (1997). Growth-stratal architectures associated to decollement folds and fault-propagation folds. Interferences on fold kinematics. Tectonophysics, 282, 353–373.CrossRefGoogle Scholar
  47. Suppe, J. (1983). Geometry and kinematics of fault-bend folding. American Journal of Science, 283, 684–721.CrossRefGoogle Scholar
  48. Suppe, J., Chou, G. T., & Hook, S. C. (1992). Rates of faulting determined from growth-strata. In K. R. McClay (Ed.), Thrust tectonics (pp. 105–121). London: Chapman and Hall.CrossRefGoogle Scholar
  49. Suppe, J., Sabat, F., Munoz, J. A., Poblet, J., Roca, E., & Vergès, J. (1997). Bed-by-bed fold growth by kink-band migration: Sant Llorenç de Morunys, eastern Pyrenees. Journal of Structural Geology, 19(34), 443–461.CrossRefGoogle Scholar
  50. Swezey, C. S. (1996). Structural controls on Quaternary depocenters within the Chotts trough region of southern Tunisia. Journal of African Earth Sciences, 22(3), 335–347.CrossRefGoogle Scholar
  51. Tavani, S., Storti, F., & Salvini, F. (2007). Modelling growth-stratal architectures associated with double edge fault-propagation folding. Sedimentary Geology, 196, 119–132.CrossRefGoogle Scholar
  52. Tricart, P., Torelli, L., Argnani, A., Rekhiss, F., & Zitellini, N. (1994). Extensional collapse related to compressional uplift in the alpine chain off northern Tunisia (Central Mediterranean). Tectonophysics, 1–4, 317–329.CrossRefGoogle Scholar
  53. Van Vliet-Lanoë, B. (2005). La planète des glaces. Histoire et environnements de notre ère glaciaire. Paris: Vuibert.Google Scholar
  54. Weijermars, R. (1988). Neogene tectonics in the western Mediterranean may have caused the Messinian salinity crisis and an associated glacial event. Tectonophysics, 148, 211–219.CrossRefGoogle Scholar
  55. Wickham, J. (1995). Fault displacement-gradient folds and the structure at Lost Hills, California (USA). Journal of Structural Geology, 17(9), 1293–1302.CrossRefGoogle Scholar
  56. Zapata, T. R., & Allmendinger, R. W. (1996). Growth-stratal records of instantaneous and progressive limb rotation in the Precordillera thrust belt and Bermejo basin, Argentina. Tectonics, 15, 1065–1083.CrossRefGoogle Scholar
  57. Zargouni, F. (1984). Style et chronologie des deformations des structures de 1’Atlas tunisien meridional. Evolution recente de l’accident Sud-atlasique. Comptes Rendus Academic Sciences (Paris), 299, 71–76.Google Scholar
  58. Zoetmeijer, R. (1993). Tectonic modelling of foreland basins. Amsterdam: University of Vrije.Google Scholar
  59. Zouari, H. (1995). Evolution géodynamique de l’Atlas centro-méridional de la Tunisie: stratigraphie, analyses géométrique, cinématique et tectono-sédimentaire. Thèse de Doctorat d’Etat, Université de Tunis II.Google Scholar

Copyright information

© Swiss Geological Society 2013

Authors and Affiliations

  1. 1.Laboratoire LR3EEcole Nationale d’Ingénieur de SfaxSfaxTunisie
  2. 2.Planétologie et Géodynamique (UMR 6112)Université de NantesNantes Cedex 3France

Personalised recommendations