Swiss Journal of Geosciences

, Volume 105, Issue 3, pp 417–434 | Cite as

A new mammalian fauna from the earliest Eocene (Ilerdian) of the Corbières (Southern France): palaeobiogeographical implications

  • Bernard Marandat
  • Sylvain Adnet
  • Laurent Marivaux
  • Alain Martinez
  • Monique Vianey-Liaud
  • Rodolphe Tabuce


A new mammal fauna from the earliest Eocene of Le Clot (Corbières, Southern France) is described. Some taxa identified there, such as Corbarimys hottingeri and Paschatherium plaziati, allow a correlation with the previously described Corbières fauna of Fordones. Moreover, the presence at Le Clot of Lessnessina praecipuus, which is defined in Palette (Provence, Southern France) allows correlating both localities. All three of these localities are referred to the MP7 reference level, even if a direct correlation with the type locality of MP7 (Dormaal, Belgium) is not ascertained. A Southern Europe biochronological sequence is proposed for the beginning of the Eocene: Silveirinha, Fordones/Palette/Le Clot, Rians/Fournes. The diagnosis of a new species of a neoplagiaulacid multituberculate (?Ectypodus riansensis nov. sp.) is proposed. From a compilation of data concerning the earliest Eocene faunas from both Northern Europe and Southern Europe, we conclude that two faunas corresponding to two distinct palaeobiogeographical provinces existed in Western Europe. This faunal disparity, probably related to climatic differences, makes correlations particularly difficult between the two provinces.


Ypresian Europe Mammals Multituberculates Palaeoclimate Palaeobiogeography 



We first wish to thank Mr. Raymond Roche, owner of the site, who kindly authorized our field work, Mikaël Antiocco for his help in the field as well as screen-washing and careful picking of sediments from le Clot and preliminary study of the Le Clot fauna in the frame of a Master Degree, Jerry Hooker for the loan of casts and publications and Pierre-Olivier Antoine for discussions. We are also indebted to Christopher Beard and Thierry Smith for their contributions to improve the manuscript. Financial supports for recent palaeontological studies in Le Clot area have been generously supported by the “Institut des Sciences de l’Evolution de Montpellier” (J.-C. Auffray). Publication ISE-M n° 2012–172.


  1. Andeweg, B. (2002). Cenozoic tectonic evolution of the Iberian Peninsula, causes and effects of changing stress fields. Ph.D. dissertation, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.Google Scholar
  2. Barrier, E. & Vrielinck, B. (2008). Palaeotectonic maps of the Middle East. Tectono-sedimentary-palinspastic maps from Late Norian to Pliocene. CGMW/CCGM, Paris, 14 maps.Google Scholar
  3. Beard, K. C. (2008). The oldest North American primate and mammalian biogeography during the Paleocene–Eocene Thermal Maximum. Proceedings of the National Academy of Sciences USA, 105, 3815–3818.CrossRefGoogle Scholar
  4. Beard, K. C., & Dawson, M. R. (1999). Intercontinental dispersal of Holarctic land mammals near the Paleocene/Eocene boundary: Paleogeographic, paleoclimatic and biostratigraphic implications. Bulletin de la Société Géologique de France, 170, 697–706.Google Scholar
  5. Beard, K. C., & Dawson, M. R. (2009). Early Wasatchian mammals of the Red Hot local fauna, uppermost Tuscahoma Formation, Lauderdale County, Mississippi. Annals of Carnegie Museum, 78(3), 193–243.CrossRefGoogle Scholar
  6. Berger, G. M., Bessière, G., Bilotte, M., & Viallard, P. (1997). Carte géologique de la France (1/50.000), feuille de Tuchan (1078). Orléans, BRGM. Notice explicative par G.M. Berger, B. Alabouvette, G. Bessière, M. Bilotte, B. Crochet, M. Dubar, J.P. Marchal, Y. Tambareau, J. Villatte and P. Viallard.Google Scholar
  7. BiochroM’97 (1997). Synthèses et tableaux de corrélation. In J.-P. Aguilar, S. Legendre, & J. Michaux (Eds.), Actes du Congrès BiochroM’97 Montpellier (pp. 769–805). Mémoires et Travaux de l’Ecole Pratique des Hautes Etudes, Institut de Montpellier, p. 21.Google Scholar
  8. Bowen, G. J., Clyde, W. C., Koch, P. L., Ting, S. Y., Alroy, J., Tsubamoto, T., et al. (2002). Mammalian dispersal at the Paleocene/Eocene boundary. Science, 295, 2062–2065.CrossRefGoogle Scholar
  9. Cojan, I., Moreau, M.-G., & Stott, L. E. (2000). Stable carbon isotope stratigraphy of the Paleogene pedogenic series of southern France as a basis for continental-marine correlation. Geology, 28(3), 259–262.CrossRefGoogle Scholar
  10. Depéret, C. (1908). The evolution of Tertiary mammals, and the importance of their migrations. American Naturalist, 42, 109–114.CrossRefGoogle Scholar
  11. Depéret, C. (1910). Etude sur la famille des Lophiodontidés. Bulletin de la Société Géologique de France, 4–10, 558–567.Google Scholar
  12. De Franceschi, D., & De Ploëg, G. (2003). Origine de l’ambre des faciès sparnaciens (Eocène inférieur) du Bassin de Paris: le bois de l’arbre producteur. Geodiversitas, 25(4), 633–647.Google Scholar
  13. Domingo, L., Lopez-Martinez, N., Leng, M. J., & Grimes, S. T. (2009). The Paleocene-Eocene Thermal Maximum record in the organic matter of the Claret and Tendruy continental sections (South Central Pyrenees, Lleida, Spain). Earth and Planetary Science Letters, 281, 226–237.CrossRefGoogle Scholar
  14. Escarguel, G. (1999). Les rongeurs de l’Eocène inférieur et moyen d’Europe occidentale: systématique, phylogénie, biochronologie et paléobiogéographie des niveaux-repères MP 7 à MP 14. Palaeovertebrata, 28, 89–351.Google Scholar
  15. Estravis, C. (1994). Microparamys paisi, un nouvel Ischyromyidae (Rodentia) de l’Éocène inférieur de Silveirinha (Baixo Mondego, Portugal). Comptes Rendus de l’Académie des Sciences, 318, 417–420.Google Scholar
  16. Estravis, C. (2000). Nuevos mamíferos del Eoceno Inferior de Silveirinha (Baixo Mondego, Portugal). Coloquios de Paleontología, 51, 281–311.Google Scholar
  17. Estravis, C., & Russell, D. E. (1989). Découverte d’un nouveau Diacodexis (Mammalia, Artiodactyla) dans l’Éocène inférieur de Silveirhina (Portugal). Palaeovertebrata, 19, 29–44.Google Scholar
  18. Estravís, C., & Russell, D. E. (1992). Paschatherium marianae, un nouveau Condylarthra de Silveirinha, Éocène inférieur du Portugal. Bulletin du Museum National d’Histoire Naturelle, 14, 185–203.Google Scholar
  19. Gingerich, P. D. (1989). New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: Composition and diversity in a rarely sampled high-floodplain assemblage. University of Michigan Papers on Paleontology, 28, 1–97.Google Scholar
  20. Gingerich, P. D. (2003). Mammalian responses to climate change at the Paleocene-Eocene boundary: Polecat Bench record in the northern Bighorn Basin, Wyoming. In S.L. Wing, P.D. Gingerich, B. Schmitz, & E. Thomas (Eds.), Causes and consequences of globally warm climates in the early Paleogene (pp. 463–478). Geological Society of America, Special Papers, 369.Google Scholar
  21. Gingerich, P. D., & Smith, T. (2006). Paleocene-Eocene land mammals from three new latest Clarkforkian and earliest Wasatchian Wash sites at Polecat Bench in the northern Bighorn Basin, Wyoming. Contributions from the Museum of Paleontology, University of Michigan, 31, 245–303.Google Scholar
  22. Ginsburg, L., & Mennessier, G. (1973). Présence d’un Phénacodontidé (Condylarthra, Mammalia) dans les sables bleutés de Salerne (Var). Comptes Rendus sommaires de la Société géologique de France, 1, 26–27.Google Scholar
  23. Godinot, M. (1978). New Adapid (Primate) from Early Eocene of Provence (Southern France). Comptes Rendus de l’Académie des Sciences, 286, 1869–1872.Google Scholar
  24. Godinot, M. (1981). Les mammifères de Rians (Eocène inférieur, Provence). Palaeovertebrata, 10, 43–126.Google Scholar
  25. Godinot, M. (1984). Un nouveau genre de Paromomyidae (Primates) de l’Eocène inférieur d’Europe. Folia Primatologica, 43, 84–96.CrossRefGoogle Scholar
  26. Godinot, M. (1992). Apport à la systématique de quatre genres d’Adapiformes (Primates, Eocène). Comptes Rendus de l’Académie des Sciences, 314, 237–242.Google Scholar
  27. Godinot, M. (1996). Le renouvellement des faunes de mammifères en Europe et en Amérique du Nord autour de la limite Paléocène-Eocène. Strata, 8, 18–20.Google Scholar
  28. Godinot, M., Crochet, J.-Y., Hartenberger, J.-L., Lange-Badré, B., Russell, D. E., & Sigé, B. (1987). Nouvelles données sur les mammifères de Palette (Eocène inférieur, Provence). Münchner Geowissenschaftliche Abhandlungen A, 10, 273–288.Google Scholar
  29. Godinot, M. & Lapparent de Broin, F. (2003). Arguments for a mammalian dispersal from Asia to Europe during the Paleocene-Eocene boundary interval. In J.W.F. Reumer & W. Wessels (Eds.), Distribution and migration of Tertiary mammals in Eurasia. A volume in honour of Hans de Bruijn (pp. 23–39). DEINSEA 10.Google Scholar
  30. Gruas-Cavagnetto, C. (1991). Pollen et Dinophycées de l’Ilerdien moyen (Eocène inférieur) de Fordones (Corbières, France). Cahiers de Micropaléontologie, 6(1), 51–66.Google Scholar
  31. Hooker, J. J. (1996). Mammalian biostratigraphy across the Paleocene–Eocene boundary in the Paris, London and Belgian basins. In R.W.O’B Knox, R.M. Corfield, & R.E. Dunay (Eds.), Correlation of the Early Paleogene in Northwest Europe (pp. 205–218). Geological Society London Special Publication, 101.Google Scholar
  32. Hooker, J. J. (1998). Mammalian faunal change across the Paleocene–Eocene transition in Europe. In M.-P.Aubry, S. Lucas, & W.A. Berggren (Eds.), Late PaleoceneEarly Eocene climatic and biotic events in the marine and terrestrial records (pp. 428–450). Columbia University Press: New York.Google Scholar
  33. Hooker, J. J. (2000). Ecological response of mammals to global warming in the late Paleocene and early Eocene. Geologiska Föreningens Förhandlingen, 122(1), 77–79.Google Scholar
  34. Hooker, J. J. & Dashzeveg, D. (2003). Evidence for direct mammalian faunal interchange between Europe and Asia near the Paleocene–Eocene boundary. In S.L. Wing, P.D. Gingerich, B. Schmitz, & E. Thomas (Eds.), Causes and consequences of globally warm climates in the Early Paleogene (pp. 479–500). Geological Society of America Special Paper, 369.Google Scholar
  35. Hooker, J. J. (2010). The mammal fauna of the early Eocene Blackheath Formation of Abbey Wood, London. Monograph of the Palaeontographical Society, 634, part of vol. 165, 1–162.Google Scholar
  36. Hottinger, L., & Schaub, H. (1960). Zur Stufeneinteilung des Paleocaens und des Eocaens. Einführung des Stufen Ilerdien and Biarritzien. Eclogae Geologicae Helvetiae, 53, 453–479.Google Scholar
  37. International Commission on Zoological Nomenclature. (1999). International code of zoological nomenclature (4th ed.). London: The International Trust for Zoological Nomenclature.CrossRefGoogle Scholar
  38. Jepsen, G. L. (1940). Paleocene faunas of the Polecat Bench Formation Wyoming. Proceedings of the American Philosophical Society, 83, 217–340.Google Scholar
  39. Kennett, J. P., & Stott, L. D. (1991). Abrupt deep sea warming, paleoceanographic changes, and benthic extinctions at the end of the Palaeocene. Nature, 353, 319–322.CrossRefGoogle Scholar
  40. Kondrashov, P. E. (2004). A new hyopsodontid (Mammalia, Condylarthra) from the early Eocene of Mongolia. In S.G. Lucas, K.E. Zeigler, & P.E. Kondrashov (Eds.), Paleogene Mammals, New Mexico Museum of Natural History and Science Bulletin (Vol. 26, pp. 165–167).Google Scholar
  41. Krause, D. W. (1982a). Multituberculates from the Wasatchian land-mammal age, Early Eocene, of Western North America. Journal of Vertebrate Paleontology, 56–2, 271–294.Google Scholar
  42. Krause, D. W. (1982b). Jaw movement, dental function, and diet in the Paleocene multituberculate Ptilodus. Paleobiology, 8, 265–281.Google Scholar
  43. Kühne, W. G. (1969). A multituberculate from the Eocene of the London Basin. Proceedings of the Geological Society of London, 1658, 199–202.Google Scholar
  44. Laurent, Y., Adnet, S., Bourdon, E., Corbalan, D., Danilo, L., Duffaud, S., et al. (2010). La Borie (Saint-Papoul, Aude): un gisement exceptionnel dans l’Éocène basal du Sud de la France. Bulletin de la Société d’Histoire Naturelle de Toulouse, 146, 89–103.Google Scholar
  45. Lopez-Martinez, N., & Pelaez-Campomanes, P. (1999). New mammals from south-central Pyrenees (Tremp Formation, Spain) and their bearing on late Paleocene marine-continental correlations. Bulletin de la Société Géologique de France, 170, 681–696.Google Scholar
  46. López-Martinez, N., Smith, R., Pélaez-Campomanes, P., & Smith, T. (2006). The acme of the micromammal Paschatherium across the Paleocene–Eocene boundary in continental Europe. Micropaleontology, 52–3, 267–280.CrossRefGoogle Scholar
  47. Louis, P. (1996). Recherches de mammifères paléogènes dans les départements de l’Aisne et de la Marne pendant la deuxième moitié du vingtième siècle. Palaeovertebrata, 25, 83–113.Google Scholar
  48. Marandat, B. (1989). Mammifères nouveaux de l’Ilerdien des Corbières et du Minervois (Bas-Languedoc, France). Palaeovertebrata, 19, 161–167.Google Scholar
  49. Marandat, B. (1991). Mammifères de l’Ilerdien moyen (Eocène inférieur) des Corbières et du Minervois (Bas-Languedoc, France). Systématique, Biostratigraphie, Corrélations. Palaeovertebrata, 20(2–3), 55–144.Google Scholar
  50. Marandat, B. (1997). La disparité des faunes mammaliennes du niveau MP 7 (Éocène inférieur) des domaines péri-mésogéens et nordiques. Investigation d’un provincialisme intra-européen. Newsletters on Stratigraphy, 35, 63–82.Google Scholar
  51. Massieux, M. (1973). Micropaléontologie stratigraphique de l’Eocène des Corbières septentrionales, Aude. Cahiers de Paléontologie.Google Scholar
  52. Molina, E., Canudo, J. I., Guernet, C., McDougall, K., Ortiz, N., Pascual, J. O., et al. (1992). The stratotypic Ilerdian revisited: integrated stratigraphy across the Paleocene/Eocene boundary. Revue de Micropaléontologie, 35, 143–156.Google Scholar
  53. Nel, A., De Ploëg, G., Dejax, J., Dutheil, D., De Franceschi, D., Gheerbrant, E., et al. (1999). Un gisement sparnacien exceptionnel à plantes, arthropodes et vertébrés (Éocène basal, MP7): Le Quesnoy (Oise, France). Comptes Rendus de l’Académie des Sciences, 329, 65–72.Google Scholar
  54. Plaziat, J-.C. (1984). Le domaine pyrénéen de la fin du Crétacé à la fin de l’Eocène. Stratigraphie, paléoenvironnements et évolution paléogéographique. Ph.D. dissertation, Université Paris Sud, France, Tomes 1–3.Google Scholar
  55. Pujalte, V., Baceta, J. I., Schmitz, B., Orue-Etxebbaria, X., Payros, A., Bernaola, G., et al. (2009). Redefinition of the Ilerdian Stage (early Eocene). Geologica Acta, 7(1–2), 177–194.Google Scholar
  56. Russell, D. E., Hartenberger, J.-L., Pomerol, C., Sen, S., Schmidt-Kittler, N., & Vianey-Liaud, M. (1982). Mammals and stratigraphy: the Paleogene of Europe. Palaeovertebrata, Mémoire extraordinaire, 1–77.Google Scholar
  57. Savage, D. E. (1971). The Sparnacian-Wasatchian mammalian fauna. Early Eocene of Europe and North America. Abhandlungen des Hessischen Landesamtes für Bodenforschung, 60, 154–158.Google Scholar
  58. Savage, D. E., Russell, D. E., & Louis, P. (1965). European Eocene Equidae (Perissodactyla). University of California Publications, Geological Sciences, 56, 1–94.Google Scholar
  59. Schmidt-Kittler, N. (Ed.) (1987). International Symposium on Mammalian Biostratigraphy and Palaeoecology of the European Paleogene-Mainz, February 18th–21st 1987, Münchner Geowissenschaftliche Abhandlungen A, 10, 1–312.Google Scholar
  60. Scott, C. S. (2005). New neoplagiaulacid multituberculates (Mammalia, Allotheria) from the Paleocene of Alberta, Canada. Journal of Paleontology, 79(6), 1189–1213.CrossRefGoogle Scholar
  61. Scott, C. S., & Krause, D. W. (2006). Multituberculates (Mammalia, Allotheria) from the earliest Tiffanian (Late Paleocene) Douglass Quarry, Eastern Crazy Mountains Basin, Montana. Contributions from the Museum of Paleontology, the University of Michigan, 31(10), 211–243.Google Scholar
  62. Sloan, R. E. (1981). Systematics of Paleocene multituberculates from the San Juan Basin, New Mexico. In S. G. Lucas, J. K. Rigby, & B. S. Kues (Eds.), Advances in San Juan Basin Paleontology (pp. 127–160). Albuquerque: University of New Mexico Press.Google Scholar
  63. Smith, T. (2000). Mammals from the Paleocene-Eocene transition in Belgium (Tienen Formation, MP7): palaeobiogeographical and biostratigraphical implications. Geologiska Föreningens i Stockholm förhandlingar (GFF), 122, 148–149.Google Scholar
  64. Smith, T., & Smith, R. (1995). Synthèse des données actuelles sur les vertébrés de la transition Paléocène-Eocène de Dormaal (Belgique). Bulletin de la Société belge de géologie, 104(1–2), 119–131.Google Scholar
  65. Smith, T., & Smith, R. (2001). The creodonts (Mammalia, Ferae) from the Paleocene-Eocene transition in Belgium (Tienen Formation, MP7). Belgian Journal of Zoology, 131, 117–135.Google Scholar
  66. Smith, T., Rose, K. D., & Gingerich, P. D. (2006). Rapid Asia-Europe-North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene-Eocene Thermal Maximum. Proceedings of the National Academy of Sciences USA, 103, 11223–11227.CrossRefGoogle Scholar
  67. Smith, T., Dupuis, C., Folie, A., Quesnel, F., Storme, J.-Y., Lacumin, P., et al. (2011). A new terrestrial vertebrate site just after the Paleocene-Eocene boundary in the Mortemer Formation of Upper Normandy, France. Comptes Rendus Palevol, 10, 11–20.CrossRefGoogle Scholar
  68. Solé, F., Gheerbrant, E., & Godinot, M. (2011). New data on the Oxyaenidae from the Early Eocene of Europe; biostratigraphic, paleobiogeographic and paleoecologic implications. Palaeontologia Electronica, 14, 1–41.Google Scholar
  69. Steurbaut, E., Magioncalda, R., Dupuis, C., Simaeys, V., Roche, E., & Roche, M. (2003). Palynology, paleoenvironments, and organic carbon isotope evolution in lagoonal Paleocene-Eocene boundary settings in North Belgium. Geological Society of America Special Paper, 369, 291–317.Google Scholar
  70. Stott, L. D., Sinha, A., Thiry, M., Aubry, M.-P., & Berggren, W. A. (1996). Global δ13C changes across the Paleocene-Eocene boundary, criteria for marine-terrestrial correlations. In R.W.O’B. Knox, R.M. Corfield, & R.E. Dunay (Eds.), Correlation of the early Paleogene in Northwest Europe (pp. 381–399). Geological Society Special Publication, 101.Google Scholar
  71. Tabuce, R., Telles Antunes, M., & Sigé, B. (2009). A new primitive bat from the earliest Eocene of Europe. Journal of Vertebrate Paleontology, 29, 627–630.CrossRefGoogle Scholar
  72. Tabuce, R., Clavel, J., & Telles Antunes, M. (2011). A structural intermediate between triisodontids and mesonychians (Mammalia, Acreodi) from the earliest Eocene of Portugal. Naturwissenschaften, 98–2, 145–155.CrossRefGoogle Scholar
  73. Tambareau, Y., Viallard, P., & Villatte, J. (1966). Modalités de la transgression Yprésienne dans la région d’Albas (Aude). Comptes Rendus Sommaires de la Société Géologique de France, 3, 141–142.Google Scholar
  74. Teilhard de Chardin, P. (1922). Les Mammifères de l’Eocène inférieur français. Annales de Paléontologie, 11, 1–38.Google Scholar
  75. Tong, Y., & Wang, J. (1994). A new neoplagiaulacid multituberculate (Mammalia) from the lower Eocene of Wutu Basin, Shandong. Vertebrata PalAsiatica, 32, 275–284.Google Scholar
  76. Vianey-Liaud, M. (1979). Les Multituberculés du Paléocène de Hainin (Hainaut, Belgique). Palaeovertebrata, 9(4), 117–131.Google Scholar
  77. Vianey-Liaud, M. (1986). Les multituberculés thanétiens de France, et leurs rapports avec les Multituberculés Nord-Américains. Palaeontographica Abhandlungen A, 191, 85–171.Google Scholar
  78. Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., & Freeman, K. H. (2005). Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science, 310, 993–996.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2012

Authors and Affiliations

  • Bernard Marandat
    • 1
  • Sylvain Adnet
    • 1
  • Laurent Marivaux
    • 1
  • Alain Martinez
    • 2
  • Monique Vianey-Liaud
    • 1
  • Rodolphe Tabuce
    • 1
  1. 1.Institut des Sciences de l’Evolution, CNRS UMR5554MontpellierFrance
  2. 2.Chemin St EstèveLézignan-CorbièresFrance

Personalised recommendations