Swiss Journal of Geosciences

, Volume 105, Issue 1, pp 85–108

Integrated Ladinian bio-chronostratigraphy and geochrononology of Monte San Giorgio (Southern Alps, Switzerland)

  • Rudolf Stockar
  • Peter O. Baumgartner
  • Daniel Condon
Article

Abstract

New biostratigraphic data significantly improve the age assignment of the Ladinian succession of Monte San Giorgio (UNESCO World Heritage List site, Southern Alps, Switzerland), whose world-famous fossil marine vertebrate faunas are now dated to the substage and zone levels. High-resolution single-zircon U–Pb dating was performed using ID-TIMS and chemical abrasion (CA) pre-treatment technique on volcanic ash layers intercalated in the biostratigraphically-defined intervals of the Meride Limestone. It yielded ages of 241.07 ± 0.13 Ma (Cava superiore beds, P. gredleri Zone), 240.63 ± 0.13 Ma (Cassina beds, P gredleri/P. archelaus transition Zone) and 239.51 ± 0.15 Ma (Lower Kalkschieferzone, P. archelaus Zone). Our results suggest that the time interval including the vertebrate-bearing Middle Triassic section spans around 4 Myr and is thus significantly shorter than so far assumed. The San Giorgio Dolomite and the Meride Limestone correlate with intervals of the Buchenstein Formation and the Wengen Formation in the reference section at Bagolino, where the Global boundary Stratotype Section and Point (GSSP) for the base of the Ladinian was defined. The new radio-isotopic ages of the Meride Limestone are up to 2 Myr older than those published for the biostratigraphically-equivalent intervals at Bagolino but they are consistent with the recent re-dating of the underlying Besano Formation, also performed using the CA technique. Average sedimentation rates at Monte San Giorgio are by more than an order of magnitude higher compared to those assumed for the Buchenstein Formation, which formed under sediment-starved pelagic conditions, and reflect prevailing high subsidence and high carbonate mud supply from the adjoining Salvatore/Esino platforms. Finally, the high-resolution U–Pb ages allow a correlation of the vertebrate faunas of the Cava superiore/Cava inferiore beds with the marine vertebrate record of the Prosanto Formation (Upper Austroalpine), so far precluded by the poor biostratigraphic control of the latter.

Keywords

Ladinian Monte San Giorgio Meride Limestone Buchenstein Formation Biostratigraphy Geochronology U–Pb Ash bed Zircon 

Abbreviation

MCSN

Museo cantonale di storia naturale, Lugano, Switzerland

References

  1. Bernasconi, S. M. (1994). Geochemical and microbial controls on dolomite formation in anoxic environments: A case study from the Middle Triassic (Ticino, Switzerland). Contributions to Sedimentology, 19, 1–109.Google Scholar
  2. Bernoulli, D. (2007). The pre-Alpine geodynamic evolution of the Southern Alps: A short summary. Bulletin für Angewandte Geologie, 12(2), 3–10.Google Scholar
  3. Bernoulli, D., Govi, M., Graeter, P., Lehner, P., Reinhard, M., & Spicher, A. (1976). Geologischer Atlas der Schweiz 1:25000, Blatt 1353 Lugano (Atlasblatt 69). Schweizerische geologische Kommission.Google Scholar
  4. Bertotti, G., Picotti, V., Bernoulli, D., & Castellarin, A. (1993). From rifting to drifting: Tectonic evolution of the South-Alpine upper crust from the Triassic to the Early Cretaceous. Sedimentary Geology, 86, 53–76.CrossRefGoogle Scholar
  5. Brack, P., & Muttoni, G. (2000). High-resolution magnetostratigraphic and lithostratigraphic correlations in Middle Triassic pelagic carbonates from the Dolomites (northern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 161, 361–380.CrossRefGoogle Scholar
  6. Brack, P., & Rieber, H. (1993). Towards a better definition of the Anisian/Ladinian boundary: New biostratigraphic data and correlations of boundary sections from the Southern Alps. Eclogae Geologicae Helvetiae, 86, 415–527.Google Scholar
  7. Brack, P., Rieber, H., & Urlichs, M. (1999). Pelagic successions in the Southern Alps and their correlation with the Germanic Middle Triassic. In: G. H. Bachmann & I. Lerche (Eds.), Epicontinental Triassic. Zentralblatt für Geologie und Paläontologie (1998) Teil 1 (pp. 853–876). Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung.Google Scholar
  8. Brack, P., Schlager, W., Stefani, M., Maurer, F., & Kenter, J. (2000). The Seceda Drill Hole in the Middle Triassic Buchenstein beds (Livinnalongo Formation, Dolomites, Northern Italy), A progress report. Rivista Italiana di Paleontologia e Stratigrafia, 106, 283–292.Google Scholar
  9. Brack, P., Rieber, H., Nicora, A., & Mundil, R. (2005). The Global boundary Stratotype Section and Point (GSSP) of the Ladinian Stage (Middle Triassic) at Bagolino (Southern Alps, Northern Italy) and its implications for the Triassic time scale. Episodes, 28, 233–244.Google Scholar
  10. Brack, P., Rieber, H., Mundil, R., Blendinger, W., & Maurer, F. (2007). Geometry and chronology of growth and drowning of Middle Triassic carbonate platforms (Cernera and Bivera/Clapsavon) in the Southern Alps (northern Italy). Swiss Journal of Geosciences, 100, 327–348.CrossRefGoogle Scholar
  11. Brugman, W. A. (1986). A palynological characterization of the Upper Scythian and Anisian of the Transdanubian Range (Hungary) and the Vicentinian Alps (Italy). PhD dissertation. State University of Utrecht, Utrecht, The Netherlands, 95 pp.Google Scholar
  12. Brühwiler, T., Hochuli, P. A., Mundil, R., Schatz, W., & Brack, P. (2007). Bio- and chronostratigraphy of the Middle Triassic Reifling Formation in the westernmost Northern Calcareous Alps. Swiss Journal of Geosciences, 100, 443–455.CrossRefGoogle Scholar
  13. Bürgin, T. (1995). Actinopterygian fishes (Osteichthyes; Actinopterygii) from the Kalkschieferzone (Uppermost Ladinian) near Meride (Canton Ticino, Southern Switzerland). Eclogae Geologicae Helvetiae, 88, 803–826.Google Scholar
  14. Bürgin, T. (1999). Middle Triassic marine fish faunas from Switzerland. In G. Arratia & H.-P. Schultze (Eds.): Mesozoic Fishes 2 – Systematics and Fossil Record (pp. 481–494). München: Pfeil.Google Scholar
  15. Bürgin, T., Rieppel, O., Sander, P. M., & Tschanz, K. (1989). The fossils of Monte San Giorgio. Scientific American, 260, 74–81.CrossRefGoogle Scholar
  16. Bürgin, T., Eichenberger, U., Furrer, H., & Tschanz, K. (1991). Die Prosanto-Formation—eine fischreiche Fossil-Lagerstätte in der Mitteltrias der Silvretta-Decke (Kanton Graubünden, Schweiz). Eclogae Geologicae Helvetiae, 84, 921–990.Google Scholar
  17. Caby, R., & Galli, J. (1964). Existence de cinérites et de tufs volcaniques dans le Trias moyen de la zone briançonnaise. Comptes rendus de l’Académie des Sciences, 259, 417–420.Google Scholar
  18. Calabrese, L., & Balini, M. (1995). The discovery of ammonoids in the Cunardo Formation (Varese). A new chronostratigraphic interpretation. Rivista Italiana di Paleontologia e Stratigrafia, 101, 367–370.Google Scholar
  19. Cirilli, S. (2010). Upper Triassic-lowermost Jurassic palynology and palynostratigraphy: A review. In S.G. Lucas (Ed.), The Triassic Timescale (pp. 285–314). Special Publications of the Geological Society of London, 334.Google Scholar
  20. Condon, D., Schoene, B., Bowring, S., Parrish, R., McLean, N., Noble, S., & Crowley, Q. (2007). EARTHTIME; isotopic tracers and optimized solutions for high-precision U-Pb ID-TIMS geochronology. Eos Transactions American Geophysical Union, 88(52), Fall Meeting Supplement, Abstract V41E-06.Google Scholar
  21. Crowley, J. L., Schoene, B., & Bowring, S. A. (2007). U-Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology, 35, 1123–1126.CrossRefGoogle Scholar
  22. Etter, W. (2002). Monte San Giorgio: Remarkable Triassic Marine Vertebrates. In D. J. Bottjer et al. (Eds.), Exceptional fossil preservation. A unique view on the evolution of marine life (pp. 220–242). New York: Columbia University Press.Google Scholar
  23. Forster, S. C., & Warrington, G. (1985). Geochronology of the Carboniferous, Permian and Triassic. In N. J. Snelling (Ed.), The Chronology of the Geological Record (pp. 77–117). Oxford, Blackwell Scientifics: Geological Society Memoir.Google Scholar
  24. Frauenfelder, A. (1916). Beiträge zur Geologie der Tessiner Kalkalpen. Eclogae Geologicae Helvetiae, 14, 247–367.Google Scholar
  25. Furrer, H. (1995). The Kalkschieferzone (Upper Meride Limestone; Ladinian) near Meride (Canton Ticino, Southern Switzerland) and the evolution of a Middle Triassic intraplatform basin. Eclogae Geologicae Helvetiae, 88, 827–852.Google Scholar
  26. Furrer, H. (1999a). Aktuelle Grabungen in den Unteren Meride-Kalken bei Acqua del Ghiffo. In Zoologisches Museum der Universität Zürich (Ed.), Fossilien und ihre Forschung in Geschichte und Gegenwart (pp. 87–103). Zürich: Zoologisches Museum der Universität Zürich.Google Scholar
  27. Furrer, H. (1999b). New excavations in marine Middle Triassic Fossil-Lagerstätten at Monte San Giorgio (Canton Ticino, Southern Switzerland) and the Duncan Mountains near Davos (Canton Graubünden, Eastern Switzerland). In S. Renesto (Ed.), Third International Symposium on Lithographic Limestones (pp. 85–88). Bergamo: Museo Civico di Scienze naturali “Enrico Caffi”.Google Scholar
  28. Furrer, H. (2001). Fossil-Lagerstätten in the Lower Meride Limestone, Ladinian. International Meeting on Mesozoic Fishes 3—Systematics, Paleoenvironments and Biodiversity, Serpiano. Guide book to the field trip to Acqua del Ghiffo near Crocifisso, Meride TI, pp. 1–11.Google Scholar
  29. Furrer, H. (2003). Der Monte San Giorgio im Südtessin—Vom Berg der Saurier zur Fossil-Lagerstätte internationaler Bedeutung. Neujahrsblatt der Naturforschenden Gesellschaft Zürich, 206, 1–64.Google Scholar
  30. Furrer, H. (2004). So kam der Fish auf den Berg—Eine Broschüre zur Sonderausstellung über die Fossilfunde am Ducan (32 pp). Chur: Bündner Natur-Museum Chur und Paläontologisches Institut und Museum der Universität Zürich.Google Scholar
  31. Furrer, H., Schaltegger, U., Ovtcharova, M., & Meister, P. (2008). U-Pb zircon age of volcaniclastic layers in Middle Triassic platform carbonates of the Austroalpine Silvretta nappe (Switzerland). Swiss Journal of Geosciences, 101, 595–603.CrossRefGoogle Scholar
  32. Gaetani, M., Gnaccolini, M., Poliani, G., Grignani, D., Gorza, M., & Martellini, L. (1992). An anoxic intraplatform basin in the Middle Triassic of Lombardy (Southern Alps, Italy): Anatomy of a hydrocarbon source. Rivista Italiana di Paleontologia e Stratigrafia, 97, 329–354.Google Scholar
  33. Gianolla, P., De Zanche, V., & Mietto, P. (1998). Triassic sequence stratigraphy in the Southern Alps (Northern Italy): Definition of sequences and basin evolution. In P.-C. De Graciansky et al. (Eds), Mesozoic and Cenozoic sequence stratigraphy of European Basins (pp. 719–747). Special Publications 60. Tulsa: SEPM (Society for Sedimentary Geology).Google Scholar
  34. Gianotti, R., & Tannoia, G. (1988). Elementi per una revisione stratigrafico-paleontologica del Trias medio superiore della regione compresa tra il Lario e il Ceresio. Atti Ticinensi di Scienze della Terra, 31, 434–445.Google Scholar
  35. Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Hardenbol, J., Van Veen, P., Thierry, J., et al. (1994). A Mesozoic time scale. Journal of Geophysical Research, B, Solid Earth and Planets, 99, 24051–24074.CrossRefGoogle Scholar
  36. Gradstein, F. M., Ogg, J., & Smith, A. (2004). A Geological Time Scale 2004 (589 pp.). Cambridge: Cambridge University Press.Google Scholar
  37. Hänni, K. (2004). Die Gattung Ceresiosaurus. Ceresiosaurus calcagnii Peyer und Ceresiosaurus lanzi n. sp. (Lauriosauridae, Sauropterygia) (147 pp.). Zürich: Vdf Hochschulverlag ETH Zürich.Google Scholar
  38. Hellmann, K. N., & Lippolt, H. J. (1981). Calibration of the Middle Triassic Time Scale by conventional K–Ar and 40Ar/39Ar dating of alkali feldspars. Journal of Geophysics, 50, 73–88.Google Scholar
  39. Hochuli, P. A., & Roghi, G. (2002). A palynological view on the Anisian/Ladinian boundary—new results from the Seceda section (Dolomites, Northern Italy). I.U.G.S. Commission on Triassic Stratigraphy, STS/IGCP, Field Meeting (pp. 29–30). Veszpröm: Program & Abstracts.Google Scholar
  40. Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., & Essling, A. M. (1971). Precision measurement of half-lives and specific of 235U and 238U. Physics Reviews, C4, 1889–1906.Google Scholar
  41. Kozur, H. W. (2003). Integrated ammonoid, conodont and radiolarian zonation of the Triassic and some remarks to Stage/Substage subdivision and the numeric age of the Triassic stages. Albertiana, 28, 57–74.Google Scholar
  42. Krzeminski, W., & Lombardo, C. (2001). New fossil Ephemeroptera and Coleoptera from the Ladinian (Middle Triassic) of Canton Ticino (Switzerland). Rivista Italiana di Paleontologia e Stratigrafia, 107, 69–78.Google Scholar
  43. Kuhn-Schnyder, E. (1974). Die Triasfauna der Tessiner Kalkalpen. Neujahrsblatt der Naturforschenden Gesellschaft Zürich, 176, 1–119.Google Scholar
  44. Kuhn-Schnyder, E., & Vonderschmitt, L. (1954). Geologische und paläontologische Probleme des Südtessins. Eclogae Geologicae Helvetiae, 46(2), 223–236.Google Scholar
  45. Lombardo, C. (2002). Caelatichthys gen. n.: A new palaeonisciform from the Middle Triassic of Northern Italy and Canton Ticino (Switzerland). Rivista Italiana di Paleontologia e Stratigrafia, 108, 399–414.Google Scholar
  46. Lombardo, C., & Tintori, A. (2004). New Perleidiforms from the Triassic of the Southern Alps and the revision of Serrolepis from the Triassic of Wüttemberg (Germany). In G. Arratia & A. Tintori (Eds.), Mesozoic Fishes 3—systematics, paleoenvironments and biodiversity (pp. 179–196). München: Pfeil.Google Scholar
  47. Lombardo, C., Renesto, S., & Tintori, A. (2005). Primi vertebrati fossili dalla Formazione di Cunardo (Ladinico inferiore, Triassico Medio) della Valtravaglia (Varese). Geologia Insubrica, 8(2), 5–9.Google Scholar
  48. Lombardo, C., Rusconi, M., & Tintori, A. (2008). New perleidiform from the lower Ladinian (Middle Triassic) of the Northern Grigna (Northern Italy). Rivista Italiana di Paleontologia e Stratigrafia, 114, 263–272.Google Scholar
  49. Lombardo, C., Sun, Z. Y., Tintori, A., Jiang, D. Y., & Hao, W. C. (2011). A new species of the genus Perleidus (Actinopterygii:Perleidiformes) from the Middle Triassic of Southern China. Bollettino della Società Paleontologica Italiana, 50(2), 75–83.Google Scholar
  50. Ludwig, K. R. (1991). Isoplot—a plotting and regression program for radiogenic isotope data: USGS Open File Report, pp. 91–445.Google Scholar
  51. Mattinson, J. M. (2005). Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multistep partial dissolution analyses for improved precision and accuracy of zircon ages. Chemical Geology, 220, 47–66.CrossRefGoogle Scholar
  52. McRoberts, C. A. (2010). Biochronology of Triassic bivalves. In S.G. Lucas (Ed.) The Triassic Timescale (pp. 201–219). Special Publications of the Geological Society of London, 334.Google Scholar
  53. Mietto, P., & Manfrin, S. (1995). A high resolution Middle Triassic ammonoid standard scale in the Tethys Realm; a preliminary report. Bulletin de la Société geologiqué de France, 166, 539–563.Google Scholar
  54. Mietto, P., Manfrin, S., Preto, N., Gianolla, P., Krystyn, L., & Roghi, G. (2003). Proposal of the global stratigraphic section and point (GSSP) for the base of the Ladinian Stage (Middle Triassic). GSSP at the base of the Avisianum Subzone (FAD of Aplococeras avisianum) in the Bagolino section (Southern Alps, NE Italy). Albertiana, 28, 26–34.Google Scholar
  55. Müller, W., Schmid, R., & Vogt, P. (1964). Vulcanogene Lagen aus der Grenzbitumenzone (Mittlere Trias) des Monte San Giorgio in den Tessiner Kalkalpen. Eclogae Geologicae Helvetiae, 57, 431–450.Google Scholar
  56. Mundil, R., Brack, P., Meier, M., Rieber, H., & Oberli, F. (1996). High resolution U-Pb dating of Middle Triassic volcaniclastics: time–scale calibration and verification of tuning parameters for carbonate sedimentation. Earth and Planetary Science Letters, 141, 137–151.CrossRefGoogle Scholar
  57. Mundil, R., Pálfy, J., Renne, P. R., & Brack, P. (2010). The Triassic timescale: New constraints and a review of geochronological data. In S.G. Lucas (Ed.) The Triassic Timescale (pp. 41–60). Special Publications of the Geological Society of London, 334.Google Scholar
  58. Muttoni, G., Nicora, A., Brack, P., & Kent, D. V. (2004). Integrated Anisian-Ladinian boundary chronology. Palaeogeography, Palaeoclimatology, Palaeoecology, 208, 85–102.CrossRefGoogle Scholar
  59. Pálfy, J., Parrish, R. R., David, K., & Vörös, A. (2003). Mid-Triassic integrated U-Pb geochronology and ammonoid biochronology from the Balaton Highland (Hungary). Journal of the Geological Society (London), 160, 271–284.CrossRefGoogle Scholar
  60. Peyer, B. (1931). Ceresiosaurus calcagnii nov. gen. nov. spec. Abhandlungen der Schweizerischen Paläontologischen Gesellschaft, 62, 1–87.Google Scholar
  61. Picotti, V., Capozzi, R., Bertozzi, G., Mosca, F., Sitta, A., & Tornaghi, M. (2007). The Miocene petroleum system of the Northern Apennines in the central Po Plain (Italy). In O. Lacombe et al. (Eds), Thrust belts and foreland basins. From fold kinematics to hydrocarbon systems (pp. 117–131). Heidelberg: Springer.Google Scholar
  62. Rieber, H. (1969). Daonellen aus der Grenzbitumenzone der mittleren Trias des Monte San Giorgio (Kt. Tessin, Schweiz). Eclogae Geologicae Helvetiae, 62, 657–683.Google Scholar
  63. Rieber, H. (1973a). Ergebnisse paläontologish-stratigraphischer Untersuchungen in der Grenzbitumenzone (Mittlere Trias) des Monte San Giorgio (Kanton Tessin, Schweiz). Eclogae Geologicae Helvetiae, 66, 667–685.Google Scholar
  64. Rieber, H. (1973b). Cephalopoden aus der Grenzbitumenzone (Mittlere Trias) des Monte San Giorgio (Kanton Tessin, Schweiz). Schweizerische Paläontologische Abhandlungen, 93, 1–96.Google Scholar
  65. Rieppel, O. (1985). Die Triasfauna der Tessiner Kalkalpen XXV. Die Gattung Saurichthys (Pisces, Actinopterygii) aus der mittleren Trias des Monte San Giorgio, Kanton Tessin. Schweizerische Paläontologische Abhandlungen, 108, 1–103.Google Scholar
  66. Rieppel, O. (2000). Sauropterygia I. Placodontia, Pachypleurosauria, Nothosauroidea, Pistosauroidea. In P. Wellnhofer (Ed.), Handbuch der Paläoherpetologie/Encyclopedia of Paleoherpetology, Teil 12A (pp. 1–134). München: Pfeil.Google Scholar
  67. Roghi, G. (1995). Indagine palinologica del Trias medio del Sudalpino. PhD dissertation. Università di Padova, Padova, Italy, 121 pp.Google Scholar
  68. Roghi, G. (1997). Indagini palinologiche nella sezione della Val Gola (Trento). Studi Trentini di Scienze Naturali. Acta Geologica, 71(1994), 91–105.Google Scholar
  69. Röhl, H. J., Schmid-Röhl, A., Furrer, H., Frimmel, A., Oschmann, W., & Schwark, L. (2001). Microfacies, geochemistry and palaeoecology of the Middle Triassic Grenzbitumenzone from Monte San Giorgio (Canton Ticino, Switzerland). Geologia Insubrica, 6(1), 1–13.Google Scholar
  70. Sander, M. P. (1989). The pachypleurosaurids (Reptilia: Nothosauria) from the Middle Triassic of Monte San Giorgio (Switzerland) with the description of a new species. Philosophical transactions of the Royal Society of London B, 325, 561–670.CrossRefGoogle Scholar
  71. Schatz, W. (2001). Taxonomic significance of biometric characters and the consequences for classification and biostratigraphy, exemplified through moussoneliform daonellas (Daonella, Bivalvia; Triassic). Paläontologische Zeitschrift, 75, 51–70.Google Scholar
  72. Schatz, W. (2005). Taxonomie, Paläoökologie und biostratigraphische Anwendung der Daonellen (Bivalvia, Mollusca) aus der Mitteltrias Europas. Schweizerische Paläontologische Abhandlungen, 125, 1–177.Google Scholar
  73. Scheuring, B. W. (1978). Mikrofloren aus den Meridekalken des Mte. San Giorgio (Kanton Tessin). Schweizerische Paläontologische Abhandlungen, 100, 1–205.Google Scholar
  74. Scheyer, T. M., Neenan, J. M., Renesto, S., Saller, F., Hagdorn, H., Furrer, H., et al. (2011). Revised paleoecology of placodonts—with a comment on ‘The shallow marine placodont Cyamodus of the central European Germanic Basin: Its evolution, paleobiogeography and paleoecology’ by C.G. Diedrich (Historical Biology, iFirst article, 2011, 1–19, doi:10.1080/08912963.2011.575938). Historical Biology,. doi:10.1080/08912963.2011.621083.
  75. Schmitz, M. D., & Schoene, B. (2007). Derivation of isotope ratios, errors, and error correlations for U-Pb geochronology using Pb-205-U-235-(U-233)-spiked isotope dilution thermal ionization mass spectrometric data. Geochemistry Geophysics Geosystems (G3) 8(8), Q08006, doi:10.1029/2006GC001492.
  76. Senn, A. (1924). Beiträge zur Geologie des Alpensüdrandes zwischen Mendrisio und Varese. Eclogae Geologicae Helvetiae, 18, 552–632.Google Scholar
  77. Sommaruga, A., Hochuli, P. A., & Mosar, J. (1997). The Middle Triassic (Anisian) conglomerates from Capo San Martino, South of Lugano-Paradiso (Southern Alps, Switzerland). Geologia Insubrica, 2(1), 1–14.Google Scholar
  78. Stampfli, G. M., & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196, 17–33.CrossRefGoogle Scholar
  79. Steiger, R. H., & Jäger, E. (1977). Subcommission on geochronology—convention on use of decay constants in geochronology and cosmochronology. Earth and Planetary Science Letters, 36, 359–362.CrossRefGoogle Scholar
  80. Stockar, R. (2010). Facies, depositional environment, and palaeoecology of the Middle Triassic Cassina beds (Meride Limestone, Monte San Giorgio, Switzerland). Swiss Journal of Geosciences, 103, 101–119.CrossRefGoogle Scholar
  81. Stockar, R., & Kustatscher, E. (2010). The Ladinian flora from the Cassina beds (Meride Limestone, Monte San Giorgio, Switzerland): Preliminary results. Rivista Italiana di Paleontologia e Stratigrafia, 116, 173–188.Google Scholar
  82. Stockar, R., & Renesto, S. (2011). Co-occurrence of Neusticosaurus edwardsii and N. peyeri (Reptilia) in the Lower Meride Limestone (Middle Triassic, Monte San Giorgio). Swiss Journal of Geosciences, 104(suppl. 1), 167–178.Google Scholar
  83. Tintori, A. (2011). Comment on “The vertebrates of the Anisian/Ladinian boundary (Middle Triassic) from Bissendorf (NW germany) and their contribution to the anatomy, palaeoecology, and palaeobiogeography of the Germanic Basin reptiles” by C. Diedrich [Palaeogeography, Palaeoclimatology, Palaeoecology 273 (2009) 1–16]. Palaeogeography, Palaeoclimatology, Palaeoecology, 300, 205–207.CrossRefGoogle Scholar
  84. Tintori, A., & Lombardo, C. (1999). Late Ladinian fish faunas from Lombardy (North Italy): Stratigraphy and paleobiology. In G. Arratia & H.-P. Schultze (Eds.), Mesozoic Fishes 2—systematics and fossil record (pp. 495–504). München: Pfeil.Google Scholar
  85. Tintori, A., & Lombardo, C. (2005). Middle Triassic fishes from northern Italy. Geoitalia 2005, Epitome, 1, p. 277.Google Scholar
  86. Tintori, A., & Lombardo, C. (2007). A new early Semionotidae (Semionotiformes, Actinopterygii) from the Upper Ladinian of Monte San Giorgio area (Southern Switzerland and Northern Italy). Rivista Italiana di Paleontologia e Stratigrafia, 113, 369–381.Google Scholar
  87. Traverse, A. (2007). Paleopalynology (813 pp.). Dordrecht: Springer.Google Scholar
  88. Van der Eem, J. G. L. A. (1983). Aspects of Middle and Late Triassic Palynology: 6. Palynological investigations in the Ladinian and Lower Karnian of the Western Dolomites, Italy. Review of Palaeobotany and Palynology, 39, 189–300.CrossRefGoogle Scholar
  89. Wendt, I., & Carl, C. (1991). The statistical distribution of the mean squared weighted deviation. Chemical Geology: Isotope Geoscience Section, 86, 275–285.CrossRefGoogle Scholar
  90. Wirz, A. (1945). Die Triasfauna der Tessiner Kalkalpen. XV. Beiträge zur Kenntnis des Ladinikums im Gebiete des Monte San Giorgio. Schweizerische Paläontologische Abhandlungen, 65, 1–84.Google Scholar
  91. Zorn, H. (1971). Paläontologische, stratigraphische und sedimentologische Untersuchungen des Salvatoredolomits (Mitteltrias) der Tessiner Kalkalpen. Schweizerische Paläontologische Abhandlungen, 91, 1–90.Google Scholar

Copyright information

© Swiss Geological Society 2012

Authors and Affiliations

  • Rudolf Stockar
    • 1
    • 2
  • Peter O. Baumgartner
    • 1
  • Daniel Condon
    • 3
  1. 1.Institut de Géologie et PaléontologieUniversité de LausanneLausanneSwitzerland
  2. 2.Museo Cantonale di Storia NaturaleLuganoSwitzerland
  3. 3.NERC Isotope Geosciences LaboratoryBritish Geological SurveyNottinghamEngland, UK

Personalised recommendations