Swiss Journal of Geosciences

, Volume 103, Issue 3, pp 329–344 | Cite as

Deep alpine valleys: examples of geophysical explorations in Austria

  • Ewald BrücklEmail author
  • Johanna Brückl
  • Werner Chwatal
  • Christian Ullrich


Results from geophysical explorations of three deep valleys, selected from different tectonic regimes in the Eastern Alps (Ötz-, Oichten-, and Drau Valley), are presented and discussed. Ongoing tectonic deformation may use tectonic structures related to these valleys. However, seismic activity is low there. During the Würm ice age, the thickness of the ice cover ranged between 300 and 1,500 m above present ground elevation. The geophysical investigations comprised reflection seismology, gravity- and resistivity surveys. The maximum depth down to the erosional base of the valleys varies from ~340 to 700 m. Distinct layer packages of the valley-infill at depths greater than 250 m were termed “old valley-fill”. Geophysical parameters and a comparison with the reflection seismic image of an intermediate layer at the recent Pasterze glacier suggest that the top of the “old valley-fill” represents the glacier bed during the decay of the Würm glaciation. Deep erosion is not related to high basal shear stress. The confluence of tributary glaciers is apparently not a significant factor for deep erosion in our examples of deep alpine valleys. We conclude that deep erosion may be related to high water pressure at the glacier bed, supported by specific processes of tectonic weakening.


Deep alpine valleys Geophysical explorations Austria 



The geophysical investigations were funded by the Austrian Academy of Sciences (Ötz Valley), the Vienna University of Technology (Oichten Valley), the former Austrian Federal Ministry of Education, Science and Culture, and the Geocenter, Rohstoffforschung, Carinthia (Drau Valley). We further give our thanks to Verbund, Austrian Hydro Power AG, Vienna, and Pöyry Infra GmbH, Salzburg for permission to show the seismic profiles from Pasterze glacier, to P. Hacker for the permission to integrate the gravity data from the Ötz Valley into our study, and to RAG–Rohöl Aufsuchungs AG, Vienna for the permission to use the borehole data from the Oichten Valley. We further thank Dirk van Husen and an anonymous reviewer for their valuable remarks and hints for an improvement of this paper.


  1. Ampferer, O. (1939). Über die geologischen Deutungen und Bausondierungen des Maurach Riegels im Ötztal. Geologie und Bauwesen, 2, 25–43.Google Scholar
  2. Anderson, R., Molnar, P., & Kessler, M. A. (2006). Features of glacial valley profiles simply explained. Journal of Geophysical Research, 111, F01004. doi: 10.1029/2005JF000344.
  3. Andrews, J. T. (1972). Glacier power, mass balances, velocities and erosion potential. Zeitschrift für Geomorphologie N.F. Supplement Band, 13, 1–17.Google Scholar
  4. Aric, K., & Steinhauser, P. (1977). Geophysikalische Untersuchungen des Inntaluntergrundes bei Thaur, östlich von Innsbruck. Zeitschrift für Gletscherkunde und Glazialgeologie, 12, 37–54.Google Scholar
  5. Benn, D., & Evans, D. (1998). Glaciers and Glaciation. Oxford: Oxford University Press Inc., 734 pp.Google Scholar
  6. Besson, O., Marchant, R., Pugin, A., & Rouiller, J.-D. (1993). Campagne de sismique-réflexion dans la vallée du Rhône entre Sion et St-Maurice: perspectives d’exploitation géothermique des dépôts torrentiels sous-glaciaires. Bulletin du Centre d'hydrogéologie Neuchâtel, 12, 39–58.Google Scholar
  7. Besson, O., Rouiller, J.-D., Frei, W., & Masson, H. (1991). Campagne de sismique-réflexion dans la vallée du Rhône (entre Sion et Martigny, Suisse). Bulletin Murithienne, 109, 45–63.Google Scholar
  8. Bindschadler, R. (1983). The importance of pressurized subglacial water in separation and sliding at the glacier bed. Journal of Glaciology, 29, 3–19.Google Scholar
  9. Brandecker, H. (1974). Hydrogeologie des Salzburger Beckens. Steir. Beitr. Hydrogeologie, 26, 26–39.Google Scholar
  10. Brückl, E. (1988). A seismic system for shallow-depth investigations. In: 50th EAEG Meeting, 6–12 June 1988, Poster Session, The Hague, The Netherlands.Google Scholar
  11. Brückl, E., & Ullrich, Ch. (2001). Exploration of Alpine valleys with seismic and gravimetric methods. In: Proceedings of the 8th International Meeting on Alpine Gravimetry, Leoben 2000. Österreichische Beiträge zur Meteorologie und Geophysik 26 (pp. 145–149).Google Scholar
  12. Brückl, E., Brückl, J., & Heuberger, H. (2001). Present structure and prefailure topography of the giant rockslide of Köfels. Zeitschrift für Gletscherkunde und Glazialgeologie, 37, 49–79.Google Scholar
  13. Campbell, D. L. (1983). BASIC Programs to calculate gravity and magnetic anomalies for 2-1/2, Dimensional prismatic bodies. U.S.G.S. Open-File Report (pp. 83–154).Google Scholar
  14. De Franco, R., Biella, G., Caielli, G., Berra, F., Bini, A., Guglielmin, M., Piccin, A., Ravazzi, C., & Sciunnach, D. (2006). Overview of high-resolution seismic prospecting in pre-alpine and alpine basins (Lombardy Alps) INQUA–SEQS 2006. Quaternary stratigraphy and evolution of the alpine region in the european and global framework, Milano, 11–15 September 2006.Google Scholar
  15. Erismann, T. H. (1979). Mechanisms of large landslides. Rock Mechanics, 12, 15–46.CrossRefGoogle Scholar
  16. Erismann, T. H., Heuberger, H., & Preuss, E. (1977). Der Bimsstein von Köfels (Tirol), ein Bergsturz-”Friktionit”. Tschermaks Mineralogische und Petrographische Mitt, 24, 67–119.CrossRefGoogle Scholar
  17. Erker, E., Höggerl, N., Imrek, E., Hofmann-Wellenhof, B., & Kühtreiber, N. (2003). The Austrian Geoid—recent steps to a new solution. Österreichische Zeitschrift für Vermessung und Geoinformation, 91(1), 4–13.Google Scholar
  18. Finckh, P., & Frei, W. (1991). Seismic reflection profiling in the Swiss Rhone valley. Eclogae geol Helv, 84(2), 345–357.Google Scholar
  19. Gardner, G. H. F., Gardner, L. W., & Gregory, A. R. (1974). Formation velocity and density: The diagnostic basis for stratigraphic. Geophysics, 39, 770–780.CrossRefGoogle Scholar
  20. Götze, H.-J., & Lahmeyer, B. (1988). Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics, 53, 1096–1108.CrossRefGoogle Scholar
  21. Grenerczy, G., & Kenyeres, A. (2006). Crustal deformation between Adria and the European platform from space geodesy. In: N. Pinter, G. Grenerczy, J. Weber, S. Stein, & D. Medak, (Eds.), The Adria microplate: GPS geodesy, tectonics and hazards, NATO Science Series IV. Earth and Environmental Sciences, 61, 321–334.Google Scholar
  22. Gross, G., Kerschner, H., & Patzelt, G. (1977). Methodische Untersuchungen über die Schneegrenze in Gletschergebieten [Systematic research on the in Alpine glacier regions]. Zeitschrift für Gletscherkunde und Glazialgeologie, 12(2), 223–251.Google Scholar
  23. Gruber, W., & Weber, F. (2003). Ein Beitrag zur Kenntnis des glazial übertieften Inntals westlich von Innsbruck. Sitzungsberichte ÖAW, Abt.I, 210, 3–30.Google Scholar
  24. Hallet, B. (1979). A theoretical model of glacial abrasion. Journal of Glaciology, 23, 39–50.Google Scholar
  25. Haslinger, C., Krauss, S., & Stangl, G. (2007). The intra-plate velocities of GPS permanent stations of the Eastern Alps. Vermessung & Geoinformation, 2, 66–72.Google Scholar
  26. Heuberger, H. (1994). The giant landslide of Köfels, Ötztal, Tyrol. Mountain Research and Development, 14(4), 290–294.Google Scholar
  27. Höggerl, N. (2001). Bestimmung von rezenten Höhenänderungen durch wiederholte geodätische Messungen. In: Ch. Hammerl, W. Lenhardt, et al. (Eds.), Die Zentralanstalt für Meteorologie und Geodynamik (pp. 1851–2001). Graz: Leykam. ISBN:3-7011-7437-7.Google Scholar
  28. Humphrey, N. F., & Raymond, C. F. (1994). Hydrology, erosion and sediment production in a surging glacier, Variegated Glacier, Alaska, 1982–1983. Journal of Glaciology, 40, 539–552.Google Scholar
  29. Ivy-Ochs, S., et al. (1998). The age of the Köfels event. Relative, 14C and cosmogenic isotope dating of an early Holocene landslide in the Central Alps (Tyrol, Austria). Zeitschrift für Gletscherkunde und Glazialgeologie, 34, 57–68.Google Scholar
  30. Jaeger, C. (1972). Rock mechanics and engineering. Cambridge: Cambridge University Press, 417 pp.Google Scholar
  31. Keary, P., Brooks, M. & Hill, I. (2002). An introduction to geophysical exploration. Malden: Blackwell Science Ltd., 262 pp.Google Scholar
  32. Kirkbride, M., & Matthews, D. (1997). The role of fluvial and glacial erosion in landscape evolution: The Ben Ohau Range, New Zealand. Earth Surface Processes and Landforms, 22, 317–327.CrossRefGoogle Scholar
  33. Kissling, E., & Schwendener, H. (1990). The Quaternary sedimentary fill of some Alpine valleys by gravity modelling. Eclogae Geologicae Helvetiae, 83(2), 311–321.Google Scholar
  34. Klebelsberg, R. (1951). Das Becken von Längenfeld im Ötztal. Schlern-Schriften, 77, 399–422.Google Scholar
  35. Kovári, K., & Fechtig, R. (2004). Historische Alpendurchstiche in der Schweiz. Zürich: Zürich & Gesellschaft für Ingenieurbaukunst, Stäubli AG Verlag, 140 pp.Google Scholar
  36. Linzer, H.-G., Decker, K., Pereson, H., Dell’Mour, R., & Frisch, W. (2002). Balancing lateral orogenic float of the Eastern Alps. Tectonophysics, 354, 211–237.CrossRefGoogle Scholar
  37. Meier, M. F., & Post, A. S. (1962). Recent varations in mass net budgets of glaciers in western North Amerika. IASH Publishers, 58, 63–77.Google Scholar
  38. Nicolussi, K., & Patzelt, G. (2000). Untersuchungen zur holozänen Gletscherentwicklung von Pasterze und Gepatschferner (Ostalpen). Zeitschrift für Gletscherkunde und Glazialgeologie, 36, 1–87.Google Scholar
  39. Nitsche, F. O., Monin, G., Marillier, F., Graf, H., & Ansorge, J. (2001). Reflection seismic study of cenozoic sediments in an overdeepened valley of northern Switzerland: The Birrfeld area. Eclogae Geologicae Helvetiae, 94(3), 363–371.Google Scholar
  40. Oberhauser, R. (1980). Der Geologische Aufbau Österreichs (pp. 699). Wien, New York: Springer.Google Scholar
  41. Ohmura, A., Kasser, P., & Funk, M. (1992). Climate at the equilibrium line of glaciers. Journal of Glaciology, 38(130), 397–411.Google Scholar
  42. Ortner, H., Reiter, F., & Brandner, R. (2006). Kinematics of the Inntal shear zone-sub-Tauern ramp fault system section, Eastern Alps, Austria. Tectonophysics, 414, 241–258.CrossRefGoogle Scholar
  43. Paterson, W. S. B. (2002). The physics of glaciers (3rd ed., p. 481). Oxford: Pergamon.Google Scholar
  44. Penck, A. (1905). Glacial features in the surface of the Alps. Journal of Geology, 13, 1–19.CrossRefGoogle Scholar
  45. Persaud, M., & Pfiffner, O. A. (2004). Active deformation in the eastern Swiss Alps: Post-glacial faults, seismicity and surface uplift. Tectonophysics, 385, 59–84.CrossRefGoogle Scholar
  46. Pfiffner, O. A. et al. (1997). Incision and backfilling of Alpine valleys: Pliocene, Pleistocene and Holocene processes. In: O. A. Pfiffner, P. Lehner, P. Heitzmann, St. Müller, & A. Steck (Eds.), Deep structure of the Swiss Alps, results of the NRP 20 (pp. 265–288). Basel: Birkhäuser.Google Scholar
  47. Poscher, G., & Patzelt, G. (1995). The alluvial fan of the Frauenbach near Lavant -Late Glacial and Holocene development of an alluvial fan and the valley floor of the Drautal. In: Schirmer, E. (Ed.) Quarternary field trips in Central Europe, Eastern Alps Traverse (pp. 400–401). München: Vlg. F. Pfeil.Google Scholar
  48. Poscher, G. & Patzelt, G. (1996). Erdfälle in den Lockersedimenten des Ötztales. Internationales Symposion INTERPRAEVENT 1996, Garmisch-Partenkirchen. Tagungspublikation, 1, 419–433.Google Scholar
  49. Poscher, G., & Patzelt, G. (2000). Sink-hole Collapses in Soft Rocks. Sedimentological and hydrogeological aspects of groundwater induced erosion processes. Felsbau. Rock and Soil Engineering, 1(2000), 36–40.Google Scholar
  50. Preuss, E. (1971). Über den Bimsstein von Köfels/Tirol. Fortschritte Mineralogie, 49. Stuttgart, Beiheft, 70 p.Google Scholar
  51. Prinz, R. (2007). Vergleiche von Klimainformationen aus Gletschermassenbilanzmessungen an Punkt und Fläche. Auswertungen der Massenbilanzreihen von Hintereis-, Weißbrunn- und Kesselwandferner mit Hilfe von Klimadaten. Diplomarbeit. Institut für Geographie, Universität Innsbruck.Google Scholar
  52. Ratschbacher, L., Frisch, W., Linzer, H.-G., & Merle, O. (1991). Lateral extrusion in the Eastern Alps. Part II. Structural analysis. Tectonics, 10, 257–271.CrossRefGoogle Scholar
  53. Schmid, S. M., Fügenschuh, B., Kissling, E., & Schuster, R. (2004). Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae, 97, 93–117.CrossRefGoogle Scholar
  54. Schmid, Ch., & Weber, F. (2005). Ergebnisse reflexionsseismischer Messungen in glazial übertieften Tälern. Tagungsband der 65. Graz: Jahrestagung der Deutschen Geophysikalischen Gesellschaft. 226 pp.Google Scholar
  55. Schmid, Ch., & Weber, F. (2007). A contribution to the Quarternary geology of the Enns valley by reflection seismics between Liezen and Weng (Austria). Geophysical Research Abstracts, 9, 07120. SRef-ID: 1607-7962/gra/EGU2007-A-07120.Google Scholar
  56. Slupetzky, H. (1990). Holzfunde aus dem Vorfeld der Pasterze. Erste Ergebnisse von 14C-Datierungen. Zeitschrift für Gletscherkunde und Glazialgeologie, 26, 179–187.Google Scholar
  57. Tentschert, E., & Schönlaub, H. (1996). Hydrogeologische Untersuchungen und Grundwassermodellierung im Grundwasserfeld Langkampfen (Tirol). Mitt. du Österreichische Geologische Gesellschaft , Wien, 87, 29–36.Google Scholar
  58. Torge, W. (1989). Gravimetry (pp. 465). Berlin: Walter de Gruyter.Google Scholar
  59. Ullrich, Ch., & Brückl, E. (2004). Gravimetric monitoring of ground water in a deeply creeping rock slope. In: Proceedings of the 1st Workshop on International Gravity Field Research, Graz 2003. Österr. Beiträge zu Meteorologie und Geophysik 31, ISSN 1016-6254, 175–180.Google Scholar
  60. Van der Beek, P., & Bourbon, P. (2007). A quantification of the glacial imprint on relief development in the French western Alps. Geomorphology, 97(1–2), 52–72. doi: 10.1016/j.geomorph.2007.02.038.Google Scholar
  61. Van Husen, D. (1987). Die Ostalpen in den Eiszeiten. Aus der geologischen Geschichte Österreichs. Populärwiss. Veröff. Geol. B.-A.Wien, 24 pp.Google Scholar
  62. Van Husen, D. (2000). Geological Processes during Quarternary. Mitteilungen der Österreichischen Geologischen Gesellschaft, 92, 135–156.Google Scholar
  63. Walach, G, Schmid, Ch., & Posch, E. (1990). Gravimetrische Messungen im Lienzer Becken. Montanunvisität Leoben. (unpublished report)Google Scholar
  64. Watkins, J. S., Walters, L. A., & Godson, R. H. (1972). Dependence of in situ compressional-wave velocity on porosity in unsaturated rocks. Geophysics, 37(1), 29–35.CrossRefGoogle Scholar
  65. Weber, F., & Schmid, Ch. (1991). Reflexions- und refraktionsseismische Messungen im Zillertal und deren quartärgeologische Aussagen. Mitt. du Österreichische Geologische Gesellschaft , Wien, 84, 205–221.Google Scholar
  66. Weber, F., Schmid, Ch., & Figala, G. (1990). Vorläufige Ergebnisse reflexionsseismischer Messsungen im Quartär des Inntals/Tirol. Zeitschrift für Gletscherkunde und Glazialgeologie, 26, 121–144.Google Scholar
  67. Weertman, J. (1957). On the sliding of glaciers. Journal of Glaciology, 3, 33–38.Google Scholar
  68. Weinberger, L. (1955). Exkursion durch das österreichische Salzachgletschergebiet und die Möränengürtel der Irrsee-und Attersee-Zweige des Traunseegletschers. Verh. der Geologischen Bundesanstalt, 7–34.Google Scholar
  69. Won, I. J., & Bevis, M. (1987). Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines. Geophysics, 52, 232–238.CrossRefGoogle Scholar
  70. Yilmaz, O. (2001) Seismic data analysis. Tulsa: Society of Exploration Geophysicists, 2027 pp.Google Scholar
  71. Zemp, M., Haeberli, W., Hoelzle, M. & Paul, F. (2006). Alpine glaciers to disappear within decades? Geophysics Research Letters, 33, L13504. doi: 10.1029/2006GL026319.
  72. Zischinsky, U. (1969). Über Sackungen. Rock Mechanics, 1, 30–52.5.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2010

Authors and Affiliations

  • Ewald Brückl
    • 1
    Email author
  • Johanna Brückl
    • 1
  • Werner Chwatal
    • 1
  • Christian Ullrich
    • 1
  1. 1.Institute of Geodesy and GeophysicsVienna University of TechnologyViennaAustria

Personalised recommendations