Swiss Journal of Geosciences

, Volume 103, Issue 3, pp 363–374 | Cite as

Subglacial tunnel valleys in the Alpine foreland: an example from Bern, Switzerland

  • Mirjam Dürst StuckiEmail author
  • Regina Reber
  • Fritz Schlunegger


The morphology of the Alpine and adjacent landscapes is directly related to glacial erosion and associated sediment transport. Here we report the effects of glacio-hydrologic erosion on bedrock topography in the Swiss Plateau. Specifically, we identify the presence of subsurface valleys beneath the city of Bern and discuss their genesis. Stratigraphic investigations of more than 4,000 borehole data within a 430 km2-large area reveal the presence of a network of >200 m-deep and 1,000 m-wide valleys. They are flat floored with steep sided walls and are filled by Quaternary glacial deposits. The central valley beneath Bern is straight and oriented towards the NNW, with valley flanks more than 20° steep. The valley bottom has an irregular undulating profile along the thalweg, with differences between sills and hollows higher than 50–100 m over a reach of 4 km length. Approximately 500 m high bedrock highlands flank the valley network. The highlands are dissected by up to 80 m-deep and 500 m-broad hanging valleys that currently drain away from the axis of the main valley. We interpret the valleys beneath the city of Bern to be a tunnel valley network which originated from subglacial erosion by melt water. The highland valleys served as proglacial meltwater paths and are hanging with respect to the trunk system, indicating that these incipient highland systems as well as the main gorge beneath Bern formed by glacial melt water under pressure.


Tunnel valleys Swiss Plateau Quaternary Unconsolidated sediments Subglacial meltwater erosion 



This paper greatly benefited from scientific discussions with Christian Isenschmid, Peter Jordan, and Kevin Norton. Helpful suggestions by Christian Schlüchter improved the science of this paper. Dirk Rieke-Zapp is acknowledged for support in data processing and handling. The Amt für Wasser und Abfall, Bau-, Verkehrs und Energiedirektion, Kanton Bern provided the drill hole data, logistic support and the 2 m LIDAR DEM. The project was supported by the Swiss National Science foundation (SNF, 20TO21-120525), and by the ESF TopoEurope project.


  1. Beaney, C. L. (2002). Tunnel channels in southeast Alberta, Canada: Evidence for catastrophic channelized drainage. Quaternary International, 90, 67–74.CrossRefGoogle Scholar
  2. Benn, D. I., & Evans, J. A. (1998). Glaciers & Glaciations (p. 734). London: Arnold.Google Scholar
  3. Bini, A., Buoncristiani, J.-F., Couterrand, S., Ellwanger, D., Felber, M., Florineth, D., Graf, H. R., Keller, O., Kelly, M., Schlüchter, C., & Schoeneich, P. (2009). Die Schweiz während des letzteiszeitlichen Maximums (LGM) 1:500,000. Bundesamt für Landestopografie Swisstopo.Google Scholar
  4. Björnsson, H. (1996). Scales and rates of glacial sediment removal: A 20 km long, 300 m deep trench created beneath Breidamerjökull during the Little Ice Age. Annales of Glaciology, 22, 141–146.Google Scholar
  5. Boulton, G. S., & Hindmarsh, R. C. A. (1987). Sediment deformation beneath glaciers: Rheology and geological consequences. Journal of Geophysical Research, 92, 9059–9082.CrossRefGoogle Scholar
  6. Brennand, T. A., & Shaw, J. (1994). Tunnel channels and associated landforms, south-central Ontario: Their implications for ice-sheet hydrology. Canadian Journal of Earth Sciences, 31, 505–522.Google Scholar
  7. Burki, V. (2009). Glaziale Erosion: Prozesse und ihre Kapazität. Nagra Arbeitsbericht NAB 09–06. Wettingen: Nagra.Google Scholar
  8. BurVal Working Group. (2006). Buried Quaternary valleys—a geophysical approach. Zeitschrift der deutschen Gesellschaft für Geowissenschaften, 160, 237–247.Google Scholar
  9. Cederbom, C., Sinclair, H., Schlunegger, F., & Rahn, M. (2004). Climate induced rebound and exhumation of the European Alps. Geology, 32, 709–712.CrossRefGoogle Scholar
  10. Clayton, L., Attig, J. W., Mickelson, D. M. (1999). Tunnel channels formed in Wisconsin during the last glaciation. In D.M. Mickelson, & J.W. Attig (Eds.), Glacial Processes Past and Present. Geological Society of America, Special Paper 337, 69–82.Google Scholar
  11. Dobracki, R., & Krzyszkowski, D. (1997). Sedimentation and erosion at the Weichselian ice-marginal zone near Golczewo, northwestern Poland. Quaternary Science Reviews, 16, 721–740.CrossRefGoogle Scholar
  12. Dürst Stucki, M. (2009). Modellierung der Felsoberfläche in der Region Bern (Kartenblatt 1166, Bern 1:25,000). Unpublished Master’s thesis, University of Bern, Switzerland.Google Scholar
  13. Ehlers, J., & Linke, G. (1989). The origin of deep buried channels of Elsterian age in northwest Germany. Journal of Quaternary Science, 4, 255–265.CrossRefGoogle Scholar
  14. Ehlers, J., & Wingfield, R. (1991). The extension of the Late Weichselian/Late Devensian ice sheets in the North Sea Basin. Journal of Quaternary Science, 6, 313–326.CrossRefGoogle Scholar
  15. Eyles, N. (2006). The role of meltwater in glacial processes. Sedimentary Geology, 190, 257–268.CrossRefGoogle Scholar
  16. Eyles, N., & McCabe, A. M. (1989). Glaciomarine facies within subglacial tunnel valleys—the sedimentary record of Glacioisostatic down-wrapping in the Irish Sea Basin. Sedimentology, 36, 431–448.CrossRefGoogle Scholar
  17. Gabriel, G. (2006). Gravity investigation of buried Pleistocene subglacial valleys. Near Surface Geophysics, 4, 321–332.Google Scholar
  18. Galloway, W. E., & Hobday, D. K. (1983). Terrigenous clastic depositional systems (p. 423). New York: Springer.Google Scholar
  19. Glasser, N. F., & Bennett, M. R. (2004). Glacial erosional landforms: origins and significance for palaeoglaciology. Progress in Physical Geography, 28, 43–75.CrossRefGoogle Scholar
  20. Glasser, N. F., Etienne, J. L., Hambrey, M. J., Davies, J. R., Waters, R. A., & Wilby, P. R. (2004). Glacial meltwater erosion and sedimentation as evidence for multiple glaciations in west Wales. Boreas, 33, 224–237.CrossRefGoogle Scholar
  21. Götze, H.-J., Gabriel, G., Giszas, V., Hese, F., Kirsch, R., Köther, N., et al. (2009). The ice age paleo-channel “Ellerbeker Rinne”—an integrated 3D gravity study. Zeitschrift der deutschen Gesellschaft für Geowissenschaften, 160, 279–294.CrossRefGoogle Scholar
  22. Haeuselmann, P., Granger, D. E., Jeannin, P. Y., & Lauritzen, S. E. (2007). Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland. Geology, 35, 143–146.CrossRefGoogle Scholar
  23. Homewood, P., & Allen, P. (1981). Wave-, tide- and current-controlled sandbodies of Miocene Molasse, Western Switzerland. Bulletin of the American Association of Petroleum Geologists, 65, 2534–2545.Google Scholar
  24. Huuse, M., & Lykke-Andersen, H. (2000). Overdeepened Quaternary valleys in the eastern Danish North Sea: Morphology and origin. Quaternary Science Reviews, 19, 1233–1253.CrossRefGoogle Scholar
  25. Isler, A. (2005). Erläuterungen zum geologischen Atlas der Schweiz 1:25,000, Blatt Bern 1166. Bundesamt für Wasser und Geologie.Google Scholar
  26. Jäckli, A. (1970). Die Schweiz zur letzten Eiszeit: Atlas der Schweiz 6. Wabern-Bern: Eidgenössische Landestopographie.Google Scholar
  27. Jordan, P. (2007). Digitales Höhenmodell der Basis des Quartärs (DHM B_QU, “Felsmodell”). NAGRA NAB 07-12.Google Scholar
  28. Jordan, P. (2008). Digitales Höhenmodell. Am Beispiel der Felsoberfläche der Nordschweiz. Gas-Wasser-Abwasser, 6, 443–449.Google Scholar
  29. Jordan, P. (2010). Analysis of overdeepened valley using the digital elevation model of bedrock surface of northern Switzerland. Swiss Journal of Geosciences (in press).Google Scholar
  30. Jørgensen, F., & Sandersen, P. B. E. (2006). Buried and open tunnel valleys in Denmark—erosion beneath multiple ice sheets. Quaternary Science Reviews, 25, 1339–1363.CrossRefGoogle Scholar
  31. Jørgensen, F., & Sandersen, P. B. E. (2008). Mapping of buried tunnel valleys in Denmark: New perspectives for the interpretation of the Quaternary succession. Geological Survey of Denmark and Greenland Bulletin, 15, 33–36.Google Scholar
  32. Keller, B. (1989). Fazies und Stratigraphie der Oberen Meeresmolasse (Unteres Miozän) zwischen Napf und Bodensee. Unpublished PhD thesis, University of Bern, Bern, 402 pp.Google Scholar
  33. Kellerhals, P., Haefeli, C. & Rutsch, R.F. (1999). Blatt 1167 Worb. Geol. Atlas Schweiz 1:25,000. Karte 104 mit Erläuterungen. Bundesamt für Landestopografie Swisstopo.Google Scholar
  34. Kellerhals, P., & Isler, A. (1983). Profilserie durch die Quartärfüllung des Aare- und Gürbetroges zwischen Thunersee und Bern. Eclogae Geologicae Helvetiae, 76, 417–430.Google Scholar
  35. Kelly, M. A., Buoncristiani, J. F., & Schlüchter, C. (2004). A reconstruction of the last glacial maximum (LGM) ice-surface geometry in the western Swiss Alps and contiguous Alpine regions in Italy and France. Eclogae Geologicae Helvetiae, 97, 57–75.CrossRefGoogle Scholar
  36. Kirsch, R., Rumpel, H.-M., Scheer, W., & Wiederhold, H. (2006). Groundwater Resources in Buried Valleys: A Challenge for Geosciences: Hannover (p. 303). Germany: Leibniz Institute for Applied Geosciences (CGA-Institut).Google Scholar
  37. Lonergan, L., Maidment, S., & Collier, J. (2006). Pleistocene subglacial tunnel valleys in the central North Sea basin: 3-D morphology and evolution. Journal of Quaternary Sciences, 21, 891–903.CrossRefGoogle Scholar
  38. Matter, A., Homewood, P., Caron, C., Rigassi, D., Van Stujivenberg, J., Weidmann, M., et al. (1980). Flysch and molasse of western and central Switzerland. In R. Trümpy (Ed.), Geology of Switzerland, A Guidebook, Part B, Excursions (pp. 261–293). Basel: Schweizerische Geologische Kommission, Wepf.Google Scholar
  39. Mooers, H. D. (1989). On the Formation of the Tunnel Valleys of the Superior Lobe, Central Minnesota. Quaternary Research, 32, 24–35.CrossRefGoogle Scholar
  40. Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., et al. (2003). Onset of major Pleistocene glaciations in the Alps. Geology, 31, 989–992.CrossRefGoogle Scholar
  41. Naturaqua (1997). Hydrologie der Region westlich und nordwestlich von Bern. Wasser- und Energiewirtschaftsamt des Kantons Bern (WEA).Google Scholar
  42. Norton, K., Abbühl, L. & Schlunegger, F. (2010). Glacial conditioning as an erosional driving force in the Central Alps. Geology, 38, 655–658.CrossRefGoogle Scholar
  43. Ó Cofaigh, C. (1996). Tunnel valley genesis. Progress in Physical Geography, 20, 1–19.CrossRefGoogle Scholar
  44. Patterson, C. J. (1994). Tunnel-valley fans of the St. Croix moraine, eastcentral Minnesota, USA. In W. P. Warren & D. G. Croot (Eds.), Formation and Deformation of Glacial Deposits (pp. 69–87). Rotterdam: Balkema.Google Scholar
  45. Penck, A., & Brückner, E. (1901–1909). Die Alpen im Eiszeitalter (3 Bände). Tachnitz, Leipzig.Google Scholar
  46. Pfiffner, O. A. (1986). Evolution of the north Alpine foreland basin in the central Alps. In P.A. Allen, & P. Homewood (Eds.), Foreland Basins. International Association of Sedimentologists, Special Publication 8, 219–228.Google Scholar
  47. Pfiffner, O. A., Erard, P. F., & Stäuble, M. (1997). Two cross sections through the Swiss Molasse basin. In O. A. Pfiffner, P. Lehner, P. Heitzmann, S. Müller, & A. Steck (Eds.), Deep Structure of the Swiss Alps: Results From the National Research Program 20 (NRP 20) (pp. 64–72). Basel: Schweizerische Geologische Kommission, Birkhäuser.Google Scholar
  48. Piotrowski, J. A. (1994). Tunnel-valley formation in Northwest Germany—geology, mechanisms of formation and subglacial bed conditions for the bornhoved tunnel valley. Sedimentary Geology, 89, 107–141.CrossRefGoogle Scholar
  49. Praeg, D. (2003). Seismic imaging of mid-Pleistocene tunnel-valleys in the North Sea Basin-high resolution from low frequencies. Journal of Applied Geophysics, 53, 273–298.CrossRefGoogle Scholar
  50. Preusser, F., Drescher-Schneider, R., Fiebig, M., & Schlüchter, C. (2005). Reinterpretation of the Meikirch pollen record, Swiss Alpine Foreland, and implications for Middle Pleistocene chronostratigraphy. Journal of Quaternary Science, 20, 607–620.CrossRefGoogle Scholar
  51. Preusser, F., & Schlüchter, C. (2004). Dates from an important early Late Pleistocene ice advance in the Aare valley, Switzerland. Eclogae Geologicae Helvetiae, 97, 245–253.CrossRefGoogle Scholar
  52. Pugin A. (1988). Carte des isohypses de la base des sédiments du Quarternaire en Suisse occidentale, avec quelques commentaires. Landeshydrologie und -geologie Bern. Geologische Berichte Nr. 3.Google Scholar
  53. Reber, R. (2009). Modellierung der Felsoberfläche in der Region Bern (Kartenblatt 1167, Worb 1:25,000). Unpublished Master’s thesis, University of Bern, Switzerland.Google Scholar
  54. Salcher, B. C., Hinsch, R., & Wagreich, C. (2009). High-resolution mapping of glacial landforms in the North Alpine Foreland, Austria. Geomorphology, 122, 283–293.CrossRefGoogle Scholar
  55. Schlüchter, C. (1979). Übertiefte Talabschnitte in Berner Mittelland zwischen Alpen und Jura (Schweiz). Eiszeitalter und Gegenwart, 29, 101–113.Google Scholar
  56. Schlüchter, C. (1987). Talgenese im Quartär—eine Standortbestimmung. Geographica Helvetica, 2, 109–115.Google Scholar
  57. Schlunegger, F., Burbank, D. W., Matter, A., Engesser, B., & Mödden, C. (1996). Magnetostratigraphic calibration of the Oligocene to Middle Miocene (30–15 Ma) mammal biozones and depositional sequences of the Swiss Molasse Basin. Eclogae Geologicae Helvetiae, 89, 753–788.Google Scholar
  58. Schlunegger, F., & Hinderer, M. (2003). Pleistocene/Holocene climate change, re-establishment of fluvial drainage network and increase in relief in the Swiss Alps. Terra Nova, 15, 88–95.CrossRefGoogle Scholar
  59. Schlunegger, F., Rieke-Zapp, D., & Ramseyer, K. (2007). Possible environmental effects on the evolution of the Alps-Molasse Basin system. Swiss Journal of Geosciences, 100, 383–405.CrossRefGoogle Scholar
  60. Shaw, J. (2002). The meltwater hypothesis for subglacial bedforms. Quaternary International, 90, 5–22.CrossRefGoogle Scholar
  61. Shreve, R. L. (1972). Movement of water in glaciers. Journal of Glaciology, 11(62), 205–214.Google Scholar
  62. Sinclar, H. D., Coakley, B. J., Allen, P. A., & Watts, A. B. (1991). Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: an example from the central Alps, Switzerland. Tectonics, 10, 599–620.CrossRefGoogle Scholar
  63. Sjogren, D. B., Fisher, T. G., Taylor, L. D., Jol, H. M., & Munro-Stasiuk, M. J. (2002). Insipient tunnel channels. Quaternary International, 90, 41–56.CrossRefGoogle Scholar
  64. Smed, P. (1998). Die Entstehung der dänischen und norddeutschen Rinnentäler (Tunneltäler)—Glaziologische Gesichtspunkte. Eiszeitalter und Gegenwart, 48, 1–18.Google Scholar
  65. Stackebrandt, W. (2009). Subglacial channels of Northern Germany—a brief review. Zeitschrift der deutschen Gesellschaft für Geowissenschaften, 160, 203–210.CrossRefGoogle Scholar
  66. Staeger, D. (1988) Baugrundkarte der Stadt Bern und Umgebung 1:10,000 mit Erläuterungen. Beiträge zur Geologie der Schweiz, kleine Mitteilung Nr. 80.Google Scholar
  67. Streif, H. (2004). Sedimentary record of Pleistocene and Holocene marine inundations along the North Sea coast of Lower Saxony, Germany. Quaternary International, 112, 3–28.CrossRefGoogle Scholar
  68. Strunck, P., & Matter, A. (2002). Depositional evolution of the Western Swiss Molasse. Eclogae Geologicae Helvetiae, 95, 197–222.Google Scholar
  69. Sugden, D. W., Denton, G. H., & Marchant, D. (1991). Subglacial meltwater channel systems and ice sheet overriding, Asgard Range, Antartica. Geogafiska Annaler, 73A, 109–121.CrossRefGoogle Scholar
  70. Tucker, G. E., & Slingerland, R. (1997). Drainage basin response to climate change. Water Resources Research, 33, 2031–2047.CrossRefGoogle Scholar
  71. Van der Beek, P., & Bourbon, P. (2008). A quantification of the glacial imprint on relief development in the French western Alps. Geomorphology 97, 52–72. Earth and Planetary Science Letters, Annual Reviews, 32, 151–185.Google Scholar
  72. Van Husen, D. (2000). Geological processes during the Quaternary. Mitteilungen der Österreichischen Geologischen Gesellschaft, 92, 135–156.Google Scholar
  73. Whipple, K. X. (2004). Bedrock Rivers and the geomorphology of active orogens. Annual Reviews Earth and Planetary Science, 32, 151–185.CrossRefGoogle Scholar
  74. Wingfield, R. T. R. (1989). Glacial incisions indicating middle and upper Pleistocene ice limits of Britain. Terra Nova, 1, 538–548.CrossRefGoogle Scholar
  75. Wright, H.E. (1973). Tunnel valleys, Glacial surges, and subglacial hydrology of the superior lobe, Minnesota. In R.F. Black, R.P. Goldthwait, & H.B. Willman, (Eds.), The Geological Society of America, Memoir 136, 251–276.Google Scholar

Copyright information

© Swiss Geological Society 2010

Authors and Affiliations

  • Mirjam Dürst Stucki
    • 1
    Email author
  • Regina Reber
    • 1
  • Fritz Schlunegger
    • 1
  1. 1.Institute of Geological Sciences, University of BernBernSwitzerland

Personalised recommendations