Swiss Journal of Geosciences

, Volume 104, Supplement 1, pp 115–132 | Cite as

Iberomeryx minor (Mammalia, Artiodactyla) from the Early Oligocene of Soulce (Canton Jura, NW Switzerland): systematics and palaeodiet

  • Bastien Mennecart
  • Damien Becker
  • Jean-Pierre Berger


The primitive ruminant genus Iberomeryx is poorly documented, as it is essentially only known from rare occurrences of dental remains. Therefore, the phylogeny and palaeobiology of Iberomeryx remain rather enigmatic. Only two species have been described: the type species I. parvus from the Benara locality in Georgia, and the Western European species I. minor reported from France, Spain, and Switzerland. Iberomeryx savagei from India has recently been placed in the new genus Nalameryx. All these localities are dated to the Rupelian and correspond mainly to MP23 (European mammal reference level). Based on the short height of the tooth-crown and the bunoselenodont pattern of the molars, Iberomeryx has often been considered as a folivore/frugivore. The I. minor remains from Soulce (NW Switzerland) are preserved in Rupelian lacustrine lithographic limestones. One specimen from this locality represents the most complete mandible of the taxon with a partially persevered ramus. Moreover, the unpreserved portion of the mandible left an imprint in the sediment, permitting the reconstruction of the mandible outline. Based on a new description of these specimens, anatomical comparisons and Relative Warp Analysis (24 landmarks) of 94 mandibles (11 fossil and 83 extant) from 31 ruminant genera (10 fossil and 21 extant) and 40 species (11 fossil and 29 extant), this study attempts a preliminary discussion of the phylogeny and the diet of the species I. minor. The results permit to differentiate Pecora and Tragulina on the first principal component axis (first Relative warp) on behalf of the length of the diastema c/cheek teeth, the length of the premolars and the angular process. The mandible shape of I. minor is similar to those of the primitive Tragulina, but it differs somewhat from those of the extant Tragulidae, the only extant family in the Tragulina. This difference is essentially due to a stockier mandible and a deeper incisura vasorum. However, in consideration of the general pattern of its cheek teeth, I. minor as well as possibly Nalameryx should be considered to represent the only known primitive Tragulidae from the Oligocene. Moreover, I. minor should have been a selective browser (fruit and dicot foliage) but, similarly to small Hypertragulidae and Tragulidae, may also have exceptionally consumed animal matter.


Tragulidae Iberomeryx minor Mandible shape Biostratigraphy Systematics Palaeodiet 



This project was financially supported by the Swiss National Science Foundation (project 200021-115995 and 200021-126420), the Swiss Federal Roads Authority and the Office de la culture (Canton du Jura, Switzerland). The authors are grateful to Loïc Costeur and Burkart Engesser (Naturhistorisches Museum Basel, Switzerland), André Fasel (Musée d’histoire naturelle de Fribourg, Switzerland), Isabelle Groux (Paléontologie A16 collection of the Musée jurassien des sciences naturelles, Switzerland), Suzanne Jiquel (Université des Sciences et Techniques du Languedoc, Montpellier, France), and Anne-Sophie Vernon (private collection, Ouchamps, France) for providing access to their collections. The authors are indebted to Frédéric Lapaire and Gaëtan Rauber for their help in the field and Alessandro Zanazzi, Jean-Paul Billon-Bruyat, Loïc Bocat, Florent Hiard, Soffana Madani, and Laureline Scherler for helpful discussions. Special thanks go to Tayfun Yilmaz for drawing the Soulce mandible, Bernard Migy for taking the photographs, and Richard Waite who kindly improved the English. The editor Daniel Marty, the guest associate editor Loïc Costeur, and the referee Gertrud Rössner greatly improved the manuscript.


  1. Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: Ten years of progress following the “revolution”. Italian Journal of Zoology, 71, 5–16.CrossRefGoogle Scholar
  2. Aguilar, J.-P., Augustí, J., Alexeeva, N. V., Antoine, P.-O., Antunes, M. T., Archer, M., et al. (1997). Syntheses and correlation tables. In J.-P. Aguilar, S. Legendre, & J. Michaux (Eds.), Actes du Congrès BiochroM’97. Mémoires et Travaux de l’École pratique des Hautes Études (Vol. 21, pp. 769–805). France: Institut de Montpellier.Google Scholar
  3. Antoine, P.-O., Karadenizli, L., Saraç, G., & Sen, S. (2008). A giant rhinocerotoid (Mammalia, Perissodactyla) from the Late Oligocene of north-central Anatolia (Turkey). Zoological Journal of the Linnean Society, 152, 581–592.CrossRefGoogle Scholar
  4. Barry, J. C., Cote, S., MacLatchy, L., Lindsay, E. H., Kityo, R., & Rahim Rajppar, A. (2005). Oligocene and Early Miocene Ruminants (Mammalia, Artiodactyla) from Pakistan and Uganda. Palaeontologica Electronica, 8, 1–29.Google Scholar
  5. Becker, D., Lapaire, F., Picot, L., Engesser, B., & Berger, J.-P. (2004). Biostratigraphie et paléoécologie du gisement à vertébrés de La Beuchille (Oligocène, Jura, Suisse). Revue de Paléobiologie, 9, 179–191.Google Scholar
  6. Behrensmeyer, A. K., & Hook, R. W. (1992). Paleoenvironmental contexts and taphonomic modes. In A. K. Behrensmeyer, J. D. Damuth, W. A. DiMichele, R. Potts, H. D. Sues, & S. L. Wing (Eds.), Terrestrial ecosystems through time: Evolutionary paleoecology of terrestrial plants and animals (pp. 15–136). Chicago: University of Chicago Press.Google Scholar
  7. Berger, J.-P. (1996). Cartes paléogéographique-palinspastiques du basin molassique suisse (Oligocène inférieur–Miocène moyen). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 202, 1–44.Google Scholar
  8. Berger, J.-P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K., Picot, L., et al. (2005a). Paleogeography of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene. International Journal of Earth Sciences, 94, 697–710.CrossRefGoogle Scholar
  9. Berger, J.-P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K., Picot, L., et al. (2005b). Eocene-Pliocene time scale and stratigraphy of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB). International Journal of Earth Sciences, 94, 711–731.CrossRefGoogle Scholar
  10. Blondel, C. (1996). Les ongulés à la limite Eocène/Oligocène et au cours de l’Oligocène en Europe occidentale: Analyses faunistiques, morpho-anatomiques et biogéochimiques (d 13 C, d 18 O). Implications sur la reconstitution des paléoenvironnements (119 pp). Unpublished PhD thesis, University of Montpellier II, France.Google Scholar
  11. Blondel, C. (1997). Les ruminants de Pech Desse et de Pech du Fraysse (Quercy, MP 28); évolution des ruminants de l’Oligocène d’Europe. Geobios, 30, 573–591.CrossRefGoogle Scholar
  12. Blondel, C. (1998). Le squelette appendiculaire de sept ruminants oligocènes d’Europe, implications paléoécologiques. Comptes Rendus de l’Académie des Sciences de Paris, 326, 527–532.Google Scholar
  13. Bodmer, R. D. (1990). Ungulate frugivores and the browser-graser continuum. Oikos, 57, 319–325.CrossRefGoogle Scholar
  14. Bouvrain, G., Geraads, D., & Sudre, J. (1986). Révision taxonomique de quelques ruminants oligocènes des phosphorites du Quercy. Comptes Rendus de l’Académie des Sciences de Paris, 302(II(2)), 101–104.Google Scholar
  15. Brunet, M., & Jehenne, Y. (1976). Un nouveau ruminant primitif des molasses oligocènes de l’Agenais. Bulletin de la Société Géologique de France, 7, 1659–1664.Google Scholar
  16. Brunet, M., & Sudre, J. (1987). Evolution et systematique du genre Lophiomeryx POMEL 1853 (Mammalia, Artiodactyla). Münchner Geowissenschaftliche Abhandlungen, 10, 225–242.Google Scholar
  17. Brunet, M., & Vianey-Liaud, M. (1987). Mammalian Reference Levels MP21–30. Münchner Geowissenschaftliche Abhandlungen, 10, 30–31.Google Scholar
  18. Carlson, A. (1926). Über die Tragulidae und ihre Beziehungen zu den übrigen Artiodactyla. Acta Zoologica, 7, 69–100.CrossRefGoogle Scholar
  19. Caroll, R. L. (1988). Vertebrate paleontology and evolution (p. 698). New York: W.H. Freeman and Company.Google Scholar
  20. Cope, E. D. (1888). The Artiodactyla. The American Naturalist, 22, 1079–1095.CrossRefGoogle Scholar
  21. Costeur, L., & Legendre, S. (2008). Mammalian communities document a latitudinal environmental gradient during the Miocene Climatic Optimum in Western Europe. Palaios, 23, 280–288.CrossRefGoogle Scholar
  22. Demment, M. W., & van Soest, P. J. (1985). A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. The American Naturalist, 125, 641–672.CrossRefGoogle Scholar
  23. Dubost, G. (1984). Comparison of the diets of frugivorous forest ruminants of Gabon. Journal of Mammalogy, 65, 298–316.CrossRefGoogle Scholar
  24. Eisenberg, J. F. (2000). The contemporary Cervidae of Central and South America. In E. S. Vrba & G. B. Schaller (Eds.), Antilopes, deer, and relatives: Fossil record, behavioral ecology, systematics and conservation (pp. 189–202). New Haven: Yale University Press.Google Scholar
  25. Engesser, B., & Mödden, C. (1997) A new version of the biozonation of the Lower Freshwater Molasse (Oligocene, Agenian) of Switzerland and Savoy on the basis of fossil mammals. In J.-P. Aguilar, S. Legendre, & J. Michaux (Eds.), Actes du Congrès BiochroM’97. Mémoires et Travaux de l’Ecole pratique des Hautes Etudes (Vol. 21, pp. 581–590). France: Institut de Montpellier.Google Scholar
  26. Ferrandini, M., Ginsburg, L., Ferrandini, J., & Rossi, P. (2000). Présence de Pomelomeryx boulangeri (Artiodactyla, Mammalia) dans l’Oligocène supérieur de la région d’Ajaccio (Corse): étude paléontologique et conséquences. Comptes Rendus de l’Académie des Sciences de Paris, 331, 675–681.Google Scholar
  27. Filhol, H. (1882). Découverte de quelques nouveaux genres de mammifères fossiles dans les dépôts de phosphate de chaux de Quercy. Comptes Rendus de l’Académie des Sciences, 94, 138–139.Google Scholar
  28. Fleury, E. (1910). Tertiaire du vallon de Soulce. Eclogae Geologicae Helvetiae, 11, 275–278.Google Scholar
  29. Fortelius, M., & Solounias, N. (2000). Functional characterization of ungulate molars using the abrasion-attrition wear gradient: A new method for reconstructing paleodiets. American Museum Novitates, 3301, 1–36.CrossRefGoogle Scholar
  30. Franzen, J. L. (1985). Exceptional preservation of Eocene vertebrates in the lake deposit of Grube Messel (West Germany). In H. B. Whittigton & S. Conway Morris (Eds.), Extraordinary fossil biotas: Their ecological and evolutionary significance. Philosophical Transactions of the Royal Society of London B, 311, 181–186.Google Scholar
  31. Franzmann, A. W. (1981). Alces alces. Mammalian Species, 154, 1–7.CrossRefGoogle Scholar
  32. Frick, C. (1937). Horned ruminants of North America. American Museum of Natural History Bulletin, 59, 1–669.Google Scholar
  33. Gabunia, L. (1964). The Oligocene mammalian fauna of Benara (268 pp). Academy of Sciences of URSS.Google Scholar
  34. Gabunia, L. (1966). Sur les Mammifères oligocènes du Caucase. Bulletin de la Société Géologique de France, 7, 857–869.Google Scholar
  35. Gagnon, M., & Chew, A. E. (2000). Dietary preferences in extant African Bovidae. Journal of Mammalogy, 81, 490–511.CrossRefGoogle Scholar
  36. Gaudant, J. (1979). Contribution à l’étude des vertébrés oligocènes de Soulce (Canton du Jura). Eclogae Geologicae Helvetiae, 72, 871–895.Google Scholar
  37. Gentry, A. W, Rössner, G. E., & Heizmann, E. P. J. (1999). Suborder Ruminantia. In G. E. Rössner & K. Heissig (Eds.), The Miocene land mammals of Europe (pp. 225–258). München: Verlag Dr. Friedrich Pfeil.Google Scholar
  38. Geraads, D., Bouvrain, G., & Sudre, J. (1987). Relations phyletiques de Bachitherium Filhol, ruminant de l’Oligocène d’Europe occidentale. Palaeovertebrata, 17, 43–73.Google Scholar
  39. Ghaffar, A., Khan, M. A., Akhtar, M., Qureshi, M. A., Farooq, U., & Nazir, M. (2006). The oldest Cervid from the Siwalik Hills of Pakistan. Journal of Applied Science, 6, 127–130.CrossRefGoogle Scholar
  40. Gordon, I. J., & Illius, A. W. (1988). Incisor arcade structure and diet selection in ruminants. Functional Ecology, 2, 15–22.CrossRefGoogle Scholar
  41. Greppin, J. B. (1855). Notes géologiques sur les terrains modernes, quaternaires et tertiaires du Jura bernois et en particulier du Val de Delémont. Compléments aux notes géologiques (Vol. 14, 52 pp). Neue Denkschriften der Schweizerischen Naturforschenden Gesellschaft.Google Scholar
  42. Guo, J., Dawson, M., & Beard, K. C. (2000). Zhailimeryx, a new Lophiomerycid Artiodactyl (Mammalia) from the Late Middle Eocene of Central China and early evolution of ruminants. Journal of Mammalian Evolution, 7, 239–258.CrossRefGoogle Scholar
  43. Heissig, K. (1978). Fossilführende Spaltenfüllungen Süddeutschlands und die Ökologie ihrer oligozänen Huftiere. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 18, 237–288.Google Scholar
  44. Heissig, K. (1987). Changes in the rodent an ungulate fauna in the Oligocene fissure fillings of Germany. Münchener Geowissenschaftliche Abhandlungen, 10, 101–108.Google Scholar
  45. Heizmann, E. P. J., Duranthon, F., & Tassy, P. (1996). Miozäne Großsäugetiere. Stuttgarter Beiträge zur Naturkunde, Serie C, 39, 1–60.Google Scholar
  46. Hooker, J. J., Collinson, M. E., & Sille, N. P. (2004). Eocene–Oligocene mammalian faunal turnover in the Hamphire Basin, UK: Calibration to the global time scale and the major cooling event. Journal of the Geological Society, London, 161, 161–172.CrossRefGoogle Scholar
  47. Hooker, J. J., Grimes, S. T., Mattey, D. P., Collinson, M. E., & Sheldon, N. D. (2009). Refined correlation of the UK Late Eocene–Early Oligocene Solent Group and timing of its climate history. The Geological Society of America, Special Paper, 452, 179–195.CrossRefGoogle Scholar
  48. Hope, P. P. (1977). Rumen fermentation and body weight in African ruminants. In T. J. Peterle (Eds.), Proceedings of the 13 th international congress of game biologists (pp. 141–150). Washington DC: Wildlife Society.Google Scholar
  49. Janis, C. M. (1986). An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preferences. Mémoires du Museum National d’Histoire Naturelle, Paris (série C), 53, 367–387.Google Scholar
  50. Janis, C. M. (1987). Grades and Clades in Hornless Ruminants Evolution: The reality of the Gelocidae and the systematic position of Lophiomeryx and Bachitherium. Journal of Vertebrate Paleontology, 7, 200–216.CrossRefGoogle Scholar
  51. Jehenne, Y. (1987). Intérêt biostratigraphique des ruminants primitifs du Paléogène et du Néogène inférieur d’Europe occidentale. Münchner Geowissenschaftliche Abhandlungen, 10, 131–140.Google Scholar
  52. Joeckel, R. M. (1990). A functional interpretation of the masticatory system and paleoecology of entelodonts. Paleobiology, 16, 459–482.Google Scholar
  53. Kaiser, T. M., & Rössner, G. E. (2007). Dietary resource partitioning in ruminant communities of Miocene wetland and karst palaeoenvironments in Southern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 424–439.CrossRefGoogle Scholar
  54. Kingswood, S. C., & Blank, D. A. (1996). Gazella subgutturosa. Mammalian Species, 518, 1–10.Google Scholar
  55. Kleiber, M. (1975). The fire of life: An introduction to animal energetics. Huntington: Krieger.Google Scholar
  56. Legendre, S. (1989). Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentale: Structures, milieux et évolution. Münchner Geowissenschaftliche Abhandlungen, 16, 1–110.Google Scholar
  57. Lucas, S. G., & Emry, R. J. (1999). Taxonomy and biochronological significance of Paraentelodon, a giant Entelodon (Mammalia, Artiodactyle) from the Late Oligocene of Eurasia. Journal of Vertebrate Paleontology, 19, 160–168.CrossRefGoogle Scholar
  58. Luterbacher, H. P., Ali, J. R., Brinkhuis, H., Gradstein, F. M., Hooker, J. J., Monechi, S., Ogg, J. G., Powell, J. Röhl, U., Sanfilippo, A., & Schmitz, B. (2004). The Paleogene period. In F. M. Gradstein, J. G. Ogg, & A. G. Smith (Eds.), A geological time scale (pp. 384–408). Cambridge: Cambridge University Press.Google Scholar
  59. MacFadden, B. J. (2000). Cenozoic mammalian herbivores from the Americas: Reconstructing ancient diets and terrestrial communities. Annual Review of Ecology and Systematics, 31, 33–59.CrossRefGoogle Scholar
  60. Martinez, J.-N., & Sudre, J. (1995). The astragalus of Paleogene artiodactyls: Comparative morphology, variability and prediction of body mass. Lethaia, 28, 197–209.CrossRefGoogle Scholar
  61. Martini, E. (1990). The Rhinegraben system, a connection between northern and southern seas in the European Tertiary. Veröffentlichungen aus dem Übersee-Museum Bremen, A10, 83–98.Google Scholar
  62. Matthew, W. D. (1908). Osteology of Blastomeryx and phylogeny of the American Cervidae. Bulletin of the American Museum of Natural History, 23, 535–562.Google Scholar
  63. Matthews, S. C. (1973). Notes on open nomenclature and on synonymy lists. Palaeontology, 16, 713–719.Google Scholar
  64. Meagher, M. (1986). Bison bison. Mammalian Species, 266, 1–8.Google Scholar
  65. Meijaard, E., & Sheil, D. (2007). The persistance and conservation of Borneo’s mammals in lowland rain forests managed for timber: Observations, overviews and opportunities. Ecological Research, 23, 21–34.CrossRefGoogle Scholar
  66. Métais, G., Chaimanee, Y., Jaeger, J.-J., & Ducrocq, S. (2001). New remains of primitive ruminants from Thailand: Evidence of the early evolution of the Ruminantia in Asia. Zoologica Scripta, 30, 231–248.CrossRefGoogle Scholar
  67. Métais, G., & Vislobokova, I. (2007). Basal ruminants. In D. R. Prothero, & S. C. Foss (Eds.), The evolution of artiodactyls (pp. 189–212). Baltimore: The Johns Hopkins University Press.Google Scholar
  68. Métais, G., Welcomme, J.-L., & Ducrocq, S. (2009). New lophiomericyd ruminants from the Oligocene of the Bugti Hills (Balochistan, Pakistan). Journal of Vertebrate Paleontology, 29, 231–241.CrossRefGoogle Scholar
  69. Monteiro, L. R., & Reis, S. F. dos (1999). Pincipíos de morfometria geométrica (189p). Ribeirão Preto: Holos Editora.Google Scholar
  70. Nanda, A. C., & Sahni, A. (1990). Oligocene vertebrates from the Ladakh Molasse Group, Ladakh Himalaya: Paleobiogeographic implications. Journal of Himalayan Geology, 1, 1–10.Google Scholar
  71. Nanda, A. C., & Sahni, A. (1998). Ctenodactyloid rodent assemblage from Kargil Formation, Ladakh Molasse Group: Age and palaeobiogeographic implications for the Indian subcontinent in the Oligo-Miocene. Geobios, Mémoire spécial, 31, 533–544.CrossRefGoogle Scholar
  72. Perez-Barberia, F. J., & Gordon, I. J. (1999). The functional relationship between feeding type and jaw and cranial morphology in ungulates. Oecologia, 118, 157–165.CrossRefGoogle Scholar
  73. Pfirter, U. (1997). Feuille: 1106 Moutier. Atlas géologique de la Suisse 1/25’000. Notice explicative (Vol. 96, 71 pp.).Google Scholar
  74. Pfirter, U., Antenen, M., Heckendorn, W., Burkhalter, R. M., Gürler, B., & Krebs, D. (1996). Feuille: 1106 Moutier. Atlas géologique de la Suisse 1/25’000. Carte (Vol. 96).Google Scholar
  75. Picot, L. (2002). Le Paléogène des synclinaux du Jura et de la bordure sud-rhénane: Paléontologie (ostracodes), paléoécologie, biostratigraphie et paléogéographie (Vol. 5, 240 pp.). PhD Thesis, University of Fribourg, GeoFocus.Google Scholar
  76. Picot, L., Becker, D., Cavin, L., Pirkenseer, C., Lapaire, F., Rauber, G., et al. (2008). Sédimentologie et paléontologie des paléoenvironnements côtiers rupéliens de la Molasse marine rhénane dans le Jura suisse. Swiss Journal of Geosciences, 101, 483–513.CrossRefGoogle Scholar
  77. Pirkenseer, C. (2007). Foraminifera, Ostracoda and other microfossils of the Southern Upper Rhine Graben: Palaeoecology, biostratigraphy, palaeogeography and geodynamic implications (340 pp.). Unpublished PhD Thesis, University of Fribourg, Switzerland.Google Scholar
  78. Prothero, D. R. (2007). Family Moschidae. In D. R. Prothero & S. E. Foss (Eds.), The evolution of Artiodactyls (pp. 221–226). Baltimore: The Johns Hopkins University Press.Google Scholar
  79. Querino, R. B., Moraes, R. C. B., & de Zucchi, R. (2002). Relative Warp Analysis to study morphological variations in the genital capsule of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Neotropical Entomology, 31, 217–224.CrossRefGoogle Scholar
  80. Raia, P., Carotenuto, F., Meloro, C., Piras, P., & Pushkina, D. (2010). The shape of contention: Adaptation, history, and contingency in ungulate mandibles. Evolution, doi: 10.1111/j.1558-5646.2010.00944.x.
  81. Remy, J. A., Crochet, J.-Y., Sigé, B., Sudre, J., Bonis, M. de, Vianey-Liaud, M., et al. (1987). Biochronologie des phosphorites du Quercy: mise à jour des listes fauniques et nouveaux gisements de mammifères fossiles. Münchner Geowissenschaftliche Abhandlungen, 10, 169–188.Google Scholar
  82. Rivals, F., Solounias, N., & Mihlbachler, M. C. (2007). Evidence for geographic variation in the diets of Late Pleistocene and Early Holocene Bison in North America, and differences from the diets of recent Bison. Quaternary Research, 68, 338–346.CrossRefGoogle Scholar
  83. Rohlf, F. J. (1993). Relative warps analysis and an example of its application to mosquito wings. In L. F. Marcus, E. Bello, & A. Garcia-Valdecasas (Eds.), Contributions to morphometrics (pp. 131–159). Madrid: Museu Nacional de Ciencias Naturales.Google Scholar
  84. Rollier, L. (1910). Troisième supplément à la description géologique de la partie jurasienne de la feuille VII de la carte géologique au 1:1000 000. Matériaux pour la Carte Géolgique de la Suisse (n.s.), 25, 1–230.Google Scholar
  85. Rössner, G. E. (1995). Odontische und schädelanatomische Untersuchungen an Procervulus (Cervidae, Mammalia). Münchner Geowissenchaftliche Abhandlungen, 29, 127 pp.Google Scholar
  86. Rössner, G. E. (2007). Family Tragulidae. In D. R. Prothero & S. C. Foss (Eds.), The evolution of artiodactyls (pp. 213–220). Baltimore: The Johns Hopkins University Press.Google Scholar
  87. Sánchez, I. M., Quiralte, V., Morales, J., & Pickford, M. (2010). A new genus of tragulid ruminant from the early Miocene of Kenya. Acta Palaeontologica Polonica, doi: 10.4202/app.2009.0087.
  88. Schlosser, M. (1886). Beiträge zur Kenntniss der Stammesgeschichte der Huftiere und Versuch einer Systematik der Paar- und Unpaarhufer. Morphologisches Jahrbuch, 12, 1–136.Google Scholar
  89. Schmidt-Kittler, N. (1987). European reference levels and correlation tables. Münchner Geowissenschaftliche Abhandlungen, 10, 13–19.Google Scholar
  90. Schmidt-Kittler, N., Vianey-Liaud, M., Mödden, C., & Comte, B. (1997). New data for the correlation of mammal localities in the European Oligocene: Biochronological relevance of the Theridomyidae. In J.-P. Aguilar, S. Legendre, & J. Michaux (Eds.), Actes du Congrès BiochroM’97. Mémoires et Travaux de l’Ecole pratique des Hautes Etudes (Vol. 21, pp. 375–395). France: Institut de Montpellier.Google Scholar
  91. Smith, W. P. (1991). Odocoileus virginiatus. Mammalian Species, 388, 1–13.CrossRefGoogle Scholar
  92. Sokolov, V. E. (1974). Saiga tatarica. Mammalian Species, 38, 1–4.CrossRefGoogle Scholar
  93. Spencer, L. M. (1995). Morphological correlates of dietary resource partitioning in the African Bovidae. Journal of Mammalogy, 76, 448–471.CrossRefGoogle Scholar
  94. Stehlin, H. G. (1910). Die Säugertiere des schweizerischen Eocaens. Sechster Teil: Catodontherium – Dacrytherium – Leptotherium – Anoplotherium – Diplobune – Xiphodon – Pseudamphimeryx – Amphimeryx – Dichodon – Haplomeryx – Tapirulus – Gelocus. Nachträge, Artiodactyla incertae sedis, Schlussbetrachtungen über die Artiodactylen, Nachträge zu den Perissodactylen. Abhandlungen der Schweizerischen Paläontologischen Gesellschaft, 36, 839–1164.Google Scholar
  95. Stehlin, H. G. (1914). Übersicht über die Säugetiere der schweizerischen Molasseformation, ihre Fundorte und ihre stratigraphische Verbreitung. Verhandlungen der Naturforschenden Gesellschaft Basel, 21, 165–185.Google Scholar
  96. Sudre, J. (1984). Cryptomeryx Schlosser, 1886, tragulidé de l’Oligocène d’Europe; relations du genre et considérations sur l’origine de ruminants. Palaeovertebrata, 14, 1–31.Google Scholar
  97. Sudre, J. (1995). Le Garouillas et les sites contemporains (Oligocène, MP 25) des Phosphorites du Quercy (Lot, Tar-et-Garonne, France) et leurs faunes de Vertébrés. 12. Artiodactyles. Palaeontographica (A), 236, 205–256.Google Scholar
  98. Sudre, J., & Blondel, C. (1996). Sur la présence de petits gélocidés (Artiodactyla) dans l’Oligocène inférieur du Quercy (France); considérations sur les genres Pseudogelocus SCHLOSSER 1902, Paragelocus SCHLOSSER 1902 et Iberomeryx GABUNIAS 1964. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 3, 169–182.Google Scholar
  99. Vianey-Liaud, M., & Michaux, J. (2003). Évolution « graduelle » à l’échelle géologique chez les rongeurs fossiles du Cénozoïque européen. Comptes Rendus Palevol, 2, 455–472.CrossRefGoogle Scholar
  100. Wall, W. P., & Collins, C. (1998). A comparison of feeding adaptations in two primitive ruminant, Hypertragulus and Leptomeryx, from the Oligocene deposits of Badlands National Park. National Park Service Paleontological Research, 3, 13–17.Google Scholar
  101. Webb, D. S., & Taylor, B. E. (1980). The phylogeny of hornless ruminants and a description of the cranium of Archaeomeryx. Bulletin of the American Museum of Natural History, 167, 117–158.Google Scholar
  102. Zanazzi, A., & Kohn, M. J. (2008). Ecology and physiology of White River mammals based on stable isotope ratios of teeth. Palaeogeography, Palaeoclimatology, Palaeoecology, 257, 22–37.CrossRefGoogle Scholar
  103. Ziegler, A. P. (1956). Geologische Beschreibung des Blattes Courtelary (Berner Jura). Beiträge zur Geologischen Karte der Schweiz. Geology (N.F.), 102, 1–36.Google Scholar

Copyright information

© Swiss Geological Society 2010

Authors and Affiliations

  • Bastien Mennecart
    • 1
  • Damien Becker
    • 2
  • Jean-Pierre Berger
    • 1
  1. 1.Department of Geosciences, Earth SciencesUniversity of FribourgFribourgSwitzerland
  2. 2.Section d’archéologie et paléontologie, République et Canton du Jura, Office de la CulturePorrentruy 2Switzerland

Personalised recommendations