Swiss Journal of Geosciences

, Volume 104, Supplement 1, pp 85–98 | Cite as

The importance of lithographic limestones for revealing ontogenies in fossil crustaceans

  • Joachim T. HaugEmail author
  • Carolin Haug
  • Dieter Waloszek
  • Günter Schweigert


Developmental biology has become a major issue for understanding the evolution of Arthropoda. While usually only the ontogenies of extant species are studied, developmental information of fossil arthropods may exhibit developmental patterns not present in living ones. Crustacea possess, basically, a more gradual development than, for example, pterygote insects and would, therefore, be appropriate candidates for the study of fossil ontogenies. Remarkably, famous fossil deposits like the Devonian Rhynie Chert or the Early Palaeozoic ‘Orsten’-type deposits do not comprise the generally macroscopic malacostracan Crustacea (although most probably adult malacostracan fossils have already been found in the Cambrian). By contrast, the Late Jurassic Solnhofen Lithographic Limestones of southern Germany provide thousands of specimens (although only few morphotypes) that can be identified as malacostracan larvae, together with juvenile specimens differing in certain morphological aspects from their conspecific adults. More recent investigations with up-to-date imaging methodology on additional malacostracan crustacean larvae yielded also reconstructible developmental sequences of species from the Solnhofen deposits. The very similar fossil deposits of the Cretaceous lithographic limestones of Lebanon have also yielded malacostracan larvae and juvenile specimens. We present a summary of the occurrences of crustacean fossils providing developmental information and a demonstration of the potential of the lithographic limestones in this context. The importance of developmental data for understanding crustacean evolution is also highlighted.


Larvae Phyllosoma Solnhofen Lithographic Limestones Ontogenetic development Phylogeny Evolution 



A number of specimens from private collections have been used to demonstrate principal details. These were provided by Matthias Wulf, Rödelsee (Germany), Roger Frattigiani, Laichingen (Germany), Hermann Polz, Geisenheim (Germany), Markus Gebert, Iphofen (Germany), and Norbert Winkler, Stahnsdorf (Germany). We highly appreciate the continuing co-operation with all these collectors and others organised in the Solnhofen fossil forum under We also owe thanks to Stefan Liebau (Institute of Anatomy and Cell Biology, Ulm) for his long-lasting support and making the use of the fluorescence microscope Axioscope 2 possible to us. Other fluorescence images were taken on a Zeiss AXIO Observer at the Institut für Molekulare Genetik und Zellbiologie, Ulm. For this, we thank Nils Johnsson, Thomas Gronemeyer and Judith Müller. Some specimens were from the collection of the Museum für Naturkunde der Humboldt-Universität zu Berlin, kindly provided by Christian Neumann with the help of Manuela Tilling, and from the collection of the Staatliches Museum für Naturkunde Stuttgart. Furthermore, we would like to thank Andreas Maas, Ulm, for carefully reading the various drafts and making helpful suggestions. Rodney Feldmann and Walter Etter kindly reviewed the manuscript and gave helpful suggestions on both scientific content and language, for which they are both thanked. We also thank Hermann Polz for his permission to redraw drawings from his papers (1971, 1972, 1973, 1987, 1995, 1996) (processed in Inkscape 0.45). Photographs are composite images, fused with CombineZM and stitched either by using the photomerge function of Photoshop CS3 or by hand in Photoshop or Gimp. JTH is currently funded by the German Science Foundation (DFG) under grant WA-754/15-1.


  1. Aguirre-Urreta, M. B., Buatois, L. A., Chernoglasov, G. C., & Medina, F. A. (1990). First Polychelidae (Crustacea, Palinura) from the Jurassic of Antarctica. Antarctic Science, 2, 157–162.CrossRefGoogle Scholar
  2. Ahyong, S. T. (2009). The polychelidan lobsters: Phylogeny and systematics (Polychelida: Polychelidae). In J. W. Martin et al. (Eds.), Decapod crustacean phylogenetics (pp. 369–396). Boca Raton: CRC Press.Google Scholar
  3. Anger, K. (2006). Contributions of larval biology to crustacean research: A review. Invertebrate Reproduction and Development, 49, 175–205.CrossRefGoogle Scholar
  4. Bandel, K. (2007). Description and classification of Late Triassic Neritimorpha (Gastropoda, Mollusca) from the St. Cassian Formation, Italian Alps. Bulletin of Geosciences, 82, 215–274.CrossRefGoogle Scholar
  5. Barrande, J. (1887). Systeme Silurien du Centre de la Boheme (p. 215). Paris: Prag.Google Scholar
  6. Becker, G. (2005). Functional morphology of Palaeozoic ostracods: Phylogenetic implications. Hydrobiologia, 538, 23–53.CrossRefGoogle Scholar
  7. Bomfleur, B., Kerp, H., & Šimůnek, Z. (2007). A composite fluorescence micrograph of a complete pinnule of Autunia conferta. In O. Elicki & J. W. Schneider (Eds.), Fossile Ökosysteme (Vol. 36, p. 17). Freiberg: Institut für Geologie der TU Bergakademie Freiberg.Google Scholar
  8. Bosc, L. A. G. (1802). Histoire Naturelle des Crustacés. Paris: Deterville.Google Scholar
  9. Briggs, D. E. G., Sutton, M. D., Siveter, Da J, & Siveter, De J. (2005). Metamorphosis in a Silurian barnacle. Proceedings of the Royal Society of London, 272, 2365–2369.CrossRefGoogle Scholar
  10. Damen, W. G. M. (2007). Evolutionary conservation and divergence of the segmentation process in arthropods. Developmental Dynamics, 236, 1379–1391.CrossRefGoogle Scholar
  11. de Beer, G. R. (1958). Embryos and ancestors (p. 197). Oxford: Clarendon Press.Google Scholar
  12. Dixon, C. J., Ahong, S. T., & Schram, F. R. (2003). A new hypothesis of decapod phylogeny. Crustaceana, 76, 935–975.CrossRefGoogle Scholar
  13. Dodson, P. (1996). The Horned Dinosaurs: A Natural History. Chichester, West Sussex: Princeton University Press. 346 pp.Google Scholar
  14. Fayers, S. R., & Trewin, N. H. (2003). A new crustacean from the Early Devonian Rhynie chert, Aberdeenshire, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 93, 355–382.Google Scholar
  15. Fayers, S. R., & Trewin, N. H. (2004). A review of the palaeoenvironments and biota of the Windyfield chert. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, 325–339.Google Scholar
  16. Felder, D. L., Martin, J. W., & Goy, J. W. (1985). Patterns in early postlarval development of decapods. In A. M. Wenner (Ed.), Larval Growth (pp. 163–225). Rotterdam, Boston: A.A. Balkema PublishersGoogle Scholar
  17. Förster, R. (1973). Untersuchungen an oberjurassischen Palinuridae (Crustacea, Decapoda). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 13, 31–46.Google Scholar
  18. Förster, R. (1984). Bärenkrebse aus dem Cenoman des Libanon und dem Eozän Italiens. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 24, 57–66.Google Scholar
  19. Förster, R. (1985). Evolutionary trends and ecology of Mesozoic decapod crustaceans. Transactions of the Royal Society of Edinburgh, 76, 299–304.CrossRefGoogle Scholar
  20. Freeman, S., & Herron, J. C. (2004). Evolutionary analysis. (3rd ed) Benjamin Cunmings, 816 pp.Google Scholar
  21. Futuyma, D. J. (1998). Evolutionary biology (3rd ed., p. 763). Sunderland, Massachusetts: Sinauer Associates.Google Scholar
  22. Garassino, A., & Schweigert, G. (2006). The Upper Jurassic Solnhofen decapod crustacean fauna: review of the types from old descriptions (infraorders Astacidea, Thalassinidea, and Palinura). Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia naturale in Milano, 34(1), 1–64.Google Scholar
  23. Gore, R. H. (1971). Petrolisthes tridentatus: The development of larvae from a Pacific specimen in laboratory culture with a discussion of larval characters in the genus (Crustacea: Decapoda; Porcellanidae). Biological Bulletin, 141, 485–501.CrossRefGoogle Scholar
  24. Gramann, F. (1962). Extremitätenfunde an liassischen Bairdien (Ostracoda). Paläontologische Zeitschrift, 36, 28–32.Google Scholar
  25. Gramm, M. N. (1973). Cases of neoteny in fossil ostracodes. Paleontological Journal, 1, 3–12.Google Scholar
  26. Guilbert, E., Desutter-Grandcolas, L., & Grandcolas, P. (2008). Heterochrony in Tingidae (Insecta: Heteroptera): Paedomorphosis and/or peramorphosis? Biological Journal of the Linnean Society, 93(1), 71–80.CrossRefGoogle Scholar
  27. Gurney, R. (1942). The Larvae of the Decapod Crustacea (p. 306). London: The Ray Society.Google Scholar
  28. Haug, J. T., Haug, C., & Ehrlich, M. (2008a). First fossil stomatopod larva (Arthropoda: Crustacea) and a new way of documenting Solnhofen fossils (Upper Jurassic, Southern Germany). Palaeodiversity, 1, 103–109.Google Scholar
  29. Haug, J. T., Haug, C., & Ehrlich, M. (2008b). Erster fossiler Nachweis einer Fangschreckenkrebslarve (Arthropoda: Crustacea) und eine neue Methode zur Dokumentation von Solnhofen-Fossilien (Oberjura, Süddeutschland). Archaeopteryx, 26, 19–27.Google Scholar
  30. Haug, C., Haug, J. T., & Waloszek, D. (2009a). Morphology and ontogeny of the Upper Jurassic mantis shrimp Spinosculda ehrlichi n. gen. n. sp. from southern Germany. Palaeodiversity, 2, 111–118.Google Scholar
  31. Haug, C., Haug, J. T., Waloszek, D., Maas, A., Frattigiani, R., & Liebau, S. (2009b). New methods to document fossils from lithographic limestones of southern Germany and Lebanon. Palaeontologia Electronica, 12(3), 6T: 12p.Google Scholar
  32. Haug, J. T., Haug, C., Maas, A., Fayers, S. R., Trewin, N. H., & Waloszek, D. (2009c). Simple 3D images from fossil and Recent micromaterial using light microscopy. Journal of Microscopy, 233, 93–101.CrossRefGoogle Scholar
  33. Haug, J. T., Haug, C., Waloszek, D., Maas, A., Wulf, M., & Schweigert, G. (2009d). Development in Mesozoic scyllarids and implications for the evolution of Achelata (Reptantia, Decapoda, Crustacea). Palaeodiversity, 2, 97–110.Google Scholar
  34. Haug, J. T., Maas, A., & Waloszek, D. (2009e). Ontogeny of two Cambrian stem crustaceans, †Goticaris longispinosa and †Cambropachycope clarksoni. Palaeontographica Abteilung A, 289, 1–43.Google Scholar
  35. Haug, J. T., Maas, A., & Waloszek, D. (2010a). †Henningsmoenicaris scutula, †Sandtorpia vestrogothiensis gen. et sp. nov. and heterochronic events in early crustacean evolution. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 101 (in press).Google Scholar
  36. Haug, J. T., Waloszek, D., Haug, C., & Maas, A. (2010b). High-level phylogenetic analysis using developmental sequences: The Cambrian †Martinssonia elongata, †Musacaris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution. Arthropod Structure & Development, 39, 154–173.Google Scholar
  37. Hickman, C. S. (1999). Larvae in invertebrate development and evolution. In B. K. Hall & M. H. Wake (Eds.), The origin and evolution of larval forms (pp. 21–59). San Diego, London: Academic Press.Google Scholar
  38. Horner, J. R. & Goodwin, M. B. (2009). Extreme cranial ontogeny in the Upper Cretaceous dinosaur Pachycephalosaurus. PloS ONE 4(10), art. e7626, 11 pp.Google Scholar
  39. Hughes, N. C., Minelli, A., & Fusco, G. (2006). The ontogeny of trilobite segmentation: a comparative approach. Paleobiology, 32, 602–627.CrossRefGoogle Scholar
  40. Ikeya, N., Tsukagoshi, A., & Horne, D. J. (2005). Preface: The phylogeny, fossil record and ecological diversity of ostracod crustaceans. Hydrobiologia, 538, vii–xiii.Google Scholar
  41. Klausnitzer, B. (1991). Die Larven der Käfer Mitteleuropas (p. 273). Krefeld: Goecke & Evers.Google Scholar
  42. Korschelt, E., & Heider, K. (1936). Xiphosuren, Chelicerata, Arthropoda, Trilobita. In E. Korschelt & K. Heider (Eds.), Vergleichende Entwicklungsgeschichte der Tiere (pp. 647–660). Jena: Gustav FischerGoogle Scholar
  43. Leach, W. E. (1814). Malacostraca Podophthalmata Britanniae; or Descriptions of the British Species of Crabs, Lobsters, Prawns and of Other Malacostraca with Pedunculated Eyes. London: James Soverby.Google Scholar
  44. Maas, A., Braun, A., Dong, X-p, Donoghue, P. C. J., Müller, K. J., Olempska, E., et al. (2006). The ‘Orsten’—more than a Cambrian Konservat-Lagerstätte yielding exceptional preservation. Palaeoworld, 15, 266–282.CrossRefGoogle Scholar
  45. Maas, A., Waloszek, D., & Müller, K. J. (2003). Morphology, ontogeny and phylogeny of the Phosphatocopina (Crustacea) from the Upper Cambrian “Orsten” of Sweden. Fossils and Strata, 49, 1–238.Google Scholar
  46. Maisey, J. G., & de Carvalho, M. d. G. P. (1995). First records of fossil sergestid decapods and fossil brachyuran crab larvae (Arthropoda, Crustacea), with remarks on some supposed palaemonid fossils, from the Santana Formation (Aptian-Albian, NE Brazil). American Museum Novitates, 3132, 1–17.Google Scholar
  47. Malz, H. (1969). Eryonidea und Erymidea (Crust., Decap.) aus dem Solnhofener Plattenkalk. Senckenbergiana Lethaea, 50, 291–301.Google Scholar
  48. McConaugha, J. R. (1992). Decapod larvae: dispersal, mortality, and ecology. A working hypothesis. American Zoologist, 32, 512–523.Google Scholar
  49. McWilliam, P. S. (1995). Evolution in the phyllosoma and puerulus phases of the spiny lobster genus Panulirus White. Journal of Crustacean Biology, 15(3), 542–557.CrossRefGoogle Scholar
  50. Minelli, A., Brena, C., Deflorian, G., Maruzzo, D., & Fusco, G. (2006). From embryo to adult—beyond the conventional periodization of arthropod development. Development Genes and Evolution, 216(7–8), 373–383.CrossRefGoogle Scholar
  51. Mjöberg, E. (1925). The mystery of the so called “trilobite larva” or “Perty’s larva” definitely solved. Psyche, 32(3), 119–156.CrossRefGoogle Scholar
  52. Morgan, S. G., & Goy, J. W. (1987). Reproduction and larval development of the mantis shrimp Gonodactylus bredini (Crustacea: Stomatopoda) maintained in the laboratory. Journal of Crustacean Biology, 7(4), 595–618.CrossRefGoogle Scholar
  53. Müller, K. J., & Walossek, D. (1986a). Martinssonia elongata gen. et sp. n., a crustacean-like euarthropod from the Upper Cambrian ‘Orsten’ of Sweden. Zoologica Scripta, 15, 73–92.CrossRefGoogle Scholar
  54. Müller, K. J., & Walossek, D. (1986b). Arthropod larvae from the Upper Cambrian of Sweden. Transactions of the Royal Society of Edinburgh: Earth Sciences, 77, 157–179.CrossRefGoogle Scholar
  55. Müller, K. J., & Walossek, D. (1987). Morphology, ontogeny, and life habit of Agnostus pisiformis from the Upper Cambrian of Sweden. Fossils & Strata, 19, 1–124.Google Scholar
  56. Müller, K. J., & Walossek, D. (1988). External morphology and larval development of the Upper Cambrian maxillopod Bredocaris admirabilis. Fossils & Strata, 23, 1–70.Google Scholar
  57. Nielsen, C., & Martinez, P. (2003). Patterns of gene expression: Homology or homocracy? Development Genes and Evolution, 213, 149–154.Google Scholar
  58. Nützel, A., Lehnert, O., & Frýda, J. (2006). Origin of planktotrophy—evidence from early molluscs. Evolution & Development, 8(4), 325–330.CrossRefGoogle Scholar
  59. Olesen, J. (2007). Monophyly and phylogeny of Branchiopoda, with focus on morphology and homologies of branchiopod phyllopodous limbs. Journal of Crustacean Biology, 27, 165–183.CrossRefGoogle Scholar
  60. Olesen, J. (2009). Phylogeny of Branchiopoda (Crustacea)—character evolution and contribution of uniquely preserved fossils. Arthropod Systematics & Phylogeny, 67(1), 3–39.Google Scholar
  61. Pasini, G., & Garassino, A. (2009). A new phyllosoma form (Decapoda, Palinuridae) from the Late Cretaceous (Cenomanian) of Lebanon. Atti della Società Italiana di Scienze naturali e del Museo civico di Storia naturale in Milano, 150(1), 21–28.Google Scholar
  62. Polz, H. (1971). Eine weitere Phyllosoma-Larve aus den Solnhofener Plattenkalken. Neues Jahrbuch für Geologie und Paläontologie. Monatshefte, 1971(8), 474–488.Google Scholar
  63. Polz, H. (1972). Entwicklungsstadien bei fossilen Phyllosomen (Form A) aus den Solnhofener Plattenkalken. Neues Jahrbuch für Geologie und Paläontologie. Monatshefte, 1972(11), 678–689.Google Scholar
  64. Polz, H. (1973). Entwicklungsstadien bei fossilen Phyllosomen (Form B) aus den Solnhofener Plattenkalken. Neues Jahrbuch für Geologie und Paläontologie. Monatshefte, 1973(5), 284–296.Google Scholar
  65. Polz, H. (1984). Krebslarven aus den Solnhofener Plattenkalken. Archaeopteryx, 2, 30–40.Google Scholar
  66. Polz, H. (1986). Die Originale zu “Dolichopus” tener Walther 1904. Archaeopteryx, 4, 37–45.Google Scholar
  67. Polz, H. (1987). Zur Differenzierung der fossilen Phyllosomen (Crsutaca, Decapoda) aus den Solnhofener Plattenkalken. Archaeopteryx, 5, 23–32.Google Scholar
  68. Polz, H. (1993). Zur Metamerie von Clausocaris lithographica (Thylacocephala, Crustacea). Archaeopteryx, 11, 105–112.Google Scholar
  69. Polz, H. (1995). Ein außergewöhnliches Jugendstadium eines palinuriden Krebses aus den Solnhofener Plattenkalken. Archaeopteryx, 13, 67–74.Google Scholar
  70. Polz, H. (1996). Eine Form-C-Krebslarve mit erhaltenem Kopfschild (Crustacea, Decapoda, Palinuroidea) aus den Solnhofener Plattenkalken. Archaeopteryx, 14, 43–50.Google Scholar
  71. Prpic, N.-M. (2008). Parasegmental appendage allocation in annelids and arthropods and the homology of parapodia and arthropodia. Frontiers in Zoology, 5, 17, 5p.Google Scholar
  72. Ramsköld, L. (1988). Heterochrony in Silurian phacopid trilobites as suggested by the ontogeny of Acernaspis. Lethaia, 21, 307–318.CrossRefGoogle Scholar
  73. Roger, J. (1944). Eryoneicus ? sahel-almae n. sp. Crustacé Décapode du Sénonien du Liban. Bulletin du Muséum National d’Histoire Naturelle Paris, 16, 191–194.Google Scholar
  74. Schoch, R. R., & Fröbisch, N. B. (2006). Metamorphosis and neoteny: Alternative pathways in an extinct amphibian clade. Evolution, 60, 1467–1475.Google Scholar
  75. Scholl, G. (1977). Beiträge zur Embryonalentwicklung von Limulus polyphemus L. (Chelicerata, Xiphosura). Zoomorphologie, 86, 99–154.CrossRefGoogle Scholar
  76. Scholtz, G. (2005). Homology and ontogeny: pattern and process in comparative developmental biology. Theory in Biosciences, 124, 121–143.Google Scholar
  77. Scholtz, G., & Richter, S. (1995). Phylogenetic systematics of the reptantian Decapoda (Crustacea, Malacostraca). Zoological Journal of the Linnean Society, 113, 289–328.Google Scholar
  78. Schram, F. R. (1969). Some Middle Pennsylvanian Hoplocarida (Crustacea) and their phylogenetic significance. Fieldiana Geology, 12(14), 235–289.Google Scholar
  79. Schram, F. R. (2007). Paleozoic proto-mantis shrimp revisited. Journal of Paleontology, 81, 895–916.CrossRefGoogle Scholar
  80. Schram, F. R., & Dixon, C. J. (2004). Decapod phylogeny: Addition of fossil evidence to a robust morphological cladistic data set. Bulletin of the Mizunami Fossil Museum, 31, 1–19.Google Scholar
  81. Schram, F. R., & Hof, C. H. J. (1998). Fossils and the interrelationships of major crustacean groups. In G. D. Edgecombe (Ed.), Arthropod Fossils and Phylogeny (pp. 233–302). New York: Columbia University Press.Google Scholar
  82. Schram, F. R., & Koenemann, S. (2001). Developmental genetics and arthropod evolution: Part 1, on legs. Evolution & Development, 3, 343–354.CrossRefGoogle Scholar
  83. Schram, F. R., & Koenemann, S. (2004). Developmental genetics and arthropod evolution: On body regions of Crustacea. In: G. Scholtz (Ed.), Evolutionary developmental biology of crustacea (pp. 75–92). Crustacean Issues 15. Lisse:BalkemaGoogle Scholar
  84. Schweigert, G. (2001). Dimorphism in Cycleryon (Decapoda, Eryonidae) from the Upper Jurassic of Southern Germany. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie), 305, 23 pp.Google Scholar
  85. Schweitzer, C. E., Feldmann, R. M., Garassino, A., Karasawa, H., & Schweigert, G. (2010). Systematic list of fossil decapod crustacean species. Crustaceana Monographs 10. Leiden & Boston: 230 pp.Google Scholar
  86. Schweitzer, P. N., Kaesler, R. L., & Lohmann, G. P. (1986). Ontogeny and heterochrony in the ostracode Cavellina Coryell from Lower Permian rocks in Kansas. Paleobiology, 12(3), 290–301.Google Scholar
  87. Scourfield, D. J. (1926). On a new type of crustacean from the Old Red Sandstone (Rhynie Chert Bed, Aberdeenshire)—Lepidocaris rhyniensis gen. et sp. nov. Philosophical Transactions of the Royal Society of London, 214, 153–187.CrossRefGoogle Scholar
  88. Scourfield, D. J. (1940). Two new and nearly complete specimens of young stages of the Devonian fossil Crustacean Lepidocaris rhyniensis. Proceedings of the Linnean Society, 152, 290–298.Google Scholar
  89. Sevastopulo, G. D. (2005). The early ontogeny of blastoids. Geological Journal, 40, 351–362.CrossRefGoogle Scholar
  90. Smith, R. J. (2000). Morphology and ontogeny of Cretaceous ostracods with preserved appendages from Brazil. Palaeontology, 43, 63–98.CrossRefGoogle Scholar
  91. Stein, M., Waloszek, D., & Maas, A. (2005). Oelandocaris oelandica and its significance to resolving the stem lineage of Crustacea. In S. Koenemann & R. Vonck (Eds.), Crustacea and arthropod relationships (pp. 55–71). Boca Raton: CRC Press.Google Scholar
  92. Stein, M., Waloszek, D., Maas, A., Haug, J. T., & Müller, K. J. (2008). The stem crustacean Oelandocaris oelandica re-visited. Acta Palaeontologica Polonica, 53, 461–484.CrossRefGoogle Scholar
  93. Sumrall, C. D., & Wray, G. A. (2007). Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology, 33, 149–163.CrossRefGoogle Scholar
  94. Tanaka, G., Smith, R. J., Siveter, D. J., & Parker, A. R. (2009). Three-dimensionally preserved decapod larval compound eyes from the Cretaceous Santana formation of Brazil. Zoological Science, 26, 846–850.CrossRefGoogle Scholar
  95. Trewin, N. H. (1994). Depositional environment and preservation of biota in the Lower Devonian hot-springs of Rhynie, Aberdeenshire, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 84, 433–442.CrossRefGoogle Scholar
  96. Villamar, D. F., & Brusca, G. J. (1988). Variation in the larval development of Crangon nigricauda (Decapoda: Caridea), with notes on larval morphology and behavior. Journal of Crustacean Biology, 8(3), 410–419.CrossRefGoogle Scholar
  97. Vršanský, P. (2008). A complete larva of a Mesozoic (Early Cenomanian) cockroach (Insecta: Blattaria: Blattulida) from the Sisteron amber (Alpes de Haute Provence, SE France). Geologica Carpathica, 59(3), 269–272.Google Scholar
  98. Walossek, D. (1993). The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. Fossils and Strata, 32, 1–202.Google Scholar
  99. Walossek, D., & Müller, K. J. (1989). A second type A-nauplius from the Upper Cambrian “Orsten” of Sweden. Lethaia, 22, 301–306.CrossRefGoogle Scholar
  100. Walossek, D., & Müller, K. J. (1990). Upper Cambrian stem-lineage crustaceans and their bearing upon the monophyletic origin of Crustacea and the position of Agnostus. Lethaia, 23, 409–427.CrossRefGoogle Scholar
  101. Waloszek, D., & Maas, A. (2005). The evolutionary history of crustacean segmentation: A fossil-based perspective. Evolution & Development, 7(6), 515–527.CrossRefGoogle Scholar
  102. Waloszek, D., Maas, A., Chen, J-y, & Stein, M. (2007). Evolution of cephalic feeding structures and the phylogeny of Arthropoda. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 273–287.CrossRefGoogle Scholar
  103. Wehrtmann, I. S., Albornoz, L., Veliz, D., & Pardo, L. M. (1996). Early developmental stages, including the first crab, of Allopetrolisthes angulosus (Decapoda: Anomura: Porcellanidae) from Chile, reared in the laboratory. Journal of Crustacean Biology, 16(4), 730–747.CrossRefGoogle Scholar
  104. Weitschat, W. (1983). Ostracoden (O. Myodocopida) mit Weichkörper-Erhaltung aus der Unter-Trias von Spitzbergen. Paläontologische Zeitschrift, 57, 309–323.Google Scholar
  105. Williamson, D. I. (1969). Names of larvae in the Decapoda and Euphausiacea. Crustaceana, 16, 210–213.CrossRefGoogle Scholar
  106. Williamson, D. I. (1982). Larval morphology and diversity. In L. G. Abele (Ed.), The Biology of Crustacea 2. Embryology, Morphology and Genetics (pp. 43–110). New York, London: Academic Press.Google Scholar
  107. Zhang, X-g, Siveter, D. J., Waloszek, D., & Maas, A. (2007). An epipodite-bearing crown-group crustacean from the Lower Cambrian. Nature, 449, 595–598.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2010

Authors and Affiliations

  • Joachim T. Haug
    • 1
    Email author
  • Carolin Haug
    • 1
  • Dieter Waloszek
    • 1
  • Günter Schweigert
    • 2
  1. 1.Biosystematic DocumentationUniversity of UlmUlmGermany
  2. 2.Staatliches Museum für Naturkunde StuttgartStuttgartGermany

Personalised recommendations