Advertisement

Swiss Journal of Geosciences

, Volume 103, Issue 3, pp 427–455 | Cite as

Potential for deep geological sequestration of CO2 in Switzerland: a first appraisal

  • Gabriel Chevalier
  • Larryn W. DiamondEmail author
  • Werner Leu
Article

Abstract

Possibilities to sequester anthropogenic CO2 in deep geological formations are being investigated worldwide, but the potential within Switzerland has not yet been evaluated. This study presents a first-order appraisal based solely on geological criteria collated from the literature. The Swiss Molasse Basin (SMB) and the adjacent Folded Jura are the only realms of the country where CO2 could conceivably be stored in saline aquifers. Evaluation of geological criteria at the basin-wide scale shows that the SMB–Jura has moderate potential (score of 0.6 on a scale from 0 to 1) when compared to basins elsewhere. At the intrabasinal scale, inspection of the stratigraphy reveals four regional candidate aquifers that are sealed by suitable caprocks: top Basement plus basal Mesozoic sandstones, all sealed by the Anhydrite Group; Upper Muschelkalk sealed by the Gipskeuper; Hauptrogenstein sealed by the Effinger Member, and Upper Malm plus Lower Cretaceous sealed by the Lower Freshwater Molasse. Nine geological criteria are defined to evaluate the storage potential of these and other smaller scale candidates. A numerical scoring and weighting scheme allows the criteria to be assessed simultaneously, permitting the storage potential to be depicted using the 0–1 scale in contoured maps. Approximately 5,000 km2 of the central SMB exhibits potentials between 0.6 and 0.96. The Fribourg–Olten–Luzern area is the most favoured owing to the presence of several sealed aquifers within the preferred 800–2,500 m depth interval, and to its low seismicity, low geothermal gradient, low fault density, and long groundwater residence times. Smaller areas with good potential lie between Zürich and St. Gallen. In contrast, western Switzerland, the Jura and the southern SMB have markedly poorer potential. Considering only the portions of the aquifers with potential above 0.6, the theoretical, effective storage capacity of the basin is estimated to be 2,680 million tonnes of CO2.

Keywords

Sequestration Carbon dioxide Switzerland Swiss Molasse basin CO2 storage potential Geology Aquifer 

Notes

Acknowledgments

We are grateful for the support of the Schweizerische Studiengesellschaft für Mineralische Rohstoffe and of the Swiss Federal Office of Energy. Critical comments by Andreas Gautschi, Irina Gaus, Martin Mazurek, Niklaus Waber and an anonymous journal reviewer greatly helped to improve the manuscript. We further acknowledge the access to proprietary well data of the Swiss petroleum industry (SEAG and Swissgas).

References

  1. Abrahamson, N. (2000). State of the practice of seismic hazard evaluation. In: Proceedings of GeoENG, pp. 19–24.Google Scholar
  2. Abrahamson, N., Coppersmith, K.J., Koller, M., Roth, P., Sprecher, C., Toro, G.R., Youngs, R. (2004). Probabilistic seismic hazard analysis for swiss nuclear power plant sites (PEGASOS Project) (358 pp.). Final Rep. Swissnuclear (Swisselectric), Bern.Google Scholar
  3. Akinfiev, N. N., & Diamond, L. W. (2010). Thermodynamic model of aqueous CO2–H2O–NaCl solutions from −22 to 100°C and from 0.1 to 100 MPa. Fluid Phase Equilibria, 295, 104–124.CrossRefGoogle Scholar
  4. Allenbach, R. P., & Wetzel, A. (2006). Spatial patterns of Mesozoic facies relationships and the age of the Rhenish Lineament: A compilation. International Journal of Earth Sciences, 95, 803–813.CrossRefGoogle Scholar
  5. Bachu, S. (2003). Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environmental Geology, 44, 277–289.CrossRefGoogle Scholar
  6. Bachu, S., & Adams, J. J. (2003). Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution. Energy Conversion and Management, 44, 3151–3175.CrossRefGoogle Scholar
  7. BAFU. (2010). Emissionen nach CO 2 -Gesetz und Kyoto-Protokoll (Version 15.04.2010) (p. 11). Bern: Bundesamt für Umwelt BAFU.Google Scholar
  8. Beaujard, C., Signorelli, S., Kohl, T. (2006). Evaluation du potentiel géothermique suisse, rapport annuel 2006. Swiss Geophysical Commission, 18 pp.Google Scholar
  9. Beaujard, C., Signorelli, S., Kohl, T. (2007). Evaluation du potentiel géothermique suisse, rapport 2007. Swiss Geophysical Commission, 5 pp.Google Scholar
  10. Benson, S. M., & Cole, D. R. (2008). CO2 sequestration in deep sedimentary formations. Elements, 4, 325–331.CrossRefGoogle Scholar
  11. Benson, S. M., & Surles, T. (2006). Carbon dioxide capture and storage: An overview with emphasis on capture and storage in deep geological formations. Proceedings IEEE, 94, 1795–1805.CrossRefGoogle Scholar
  12. Biehler, D., Schmassmann, H., Schneemann, K., Sillanpää, J. (1993). Hydrochemische Synthese Nordschweiz: Dogger-, Lias-, Keuper- und Muschelkalk-Aquifere. Nagra Technischer Bericht NTB 92-08 (410 pp). Wettingen: Nagra.Google Scholar
  13. Bodmer, P., & Rybach, L. (1985). Heat flow maps and deep ground water circulation: Examples from Switzerland. Journal of Geodynamics, 4, 233–245.CrossRefGoogle Scholar
  14. Bouzelboudjen, M., Kiraly, L., Kimmeier, F., Zwahlen, F. (1997). Geological and hydrogeological profiles. Part 2. Hydrogeology (3 pp.). Bern: Landeshydrologie und -geologie, BAFU, Plate 8.Google Scholar
  15. Brink, H. J., Burri, P., Lunde, A., & Winhard, H. (1992). Hydrocarbon habitat and potential of Swiss and German Molasse Basin—A comparison. Eclogae Geologicae Helvetiae, 85, 715–732.Google Scholar
  16. Büchi, U. P., Lemcke, K., Wiener, G., & Zimdars, J. (1965). Geologische Ergebnisse der Erdölexploration auf das Mesozoikum im Untergrund des schweizerischen Molassebeckens. Bulletin der Vereinigung schweizerischer Petroleum-Geologen und -Ingenieure, 32, 7–38.Google Scholar
  17. Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S., & Zweigel, P. (Eds.). (2008). Book Best practice for the storage of CO 2 in saline aquifers: Observations and guidelines from the SACS and CO 2 STORE projects (p. 267). Nottingham: British Geological Survey.Google Scholar
  18. COM. (2008). Proposal for a directive of the European parliament and of the council on the geological storage of carbon dioxide and amending Council Directives (p. 48). Brussels: Commission of the European Communities.Google Scholar
  19. Diebold, P., Naef, H., Ammann, M. (1991). Zur Tektonik der zentralen Nordschweiz. Interpretation aufgrund regionaler Seismik, Oberflächengeologie und Tiefbohrungen Technischer Bericht 90-04 (277 pp). Wettingen: Nagra.Google Scholar
  20. Giardini, D., Wiemer, S., Fäh, D., Deichmann, N., Sellami, S., & Jenni, S. (2004). Seismic Hazard Assessment 2004 (p. 81). Zurich: Swiss Seismological Service.Google Scholar
  21. Gorin, G. E., Morend, D., & Pugin, A. (2003). Bedrock, quaternary sediments and recent fault activity in central Lake Neuchâtel, as derived from high-resolution reflection seismics. Eclogae Geologicae Helvetiae, 96, 3–10.Google Scholar
  22. Gorin, G. E., Signer, C., & Amberger, G. (1993). Structural configuration of the western Swiss Molasse Basin as defined by reflection seismic data. Eclogae Geologicae Helvetiae, 86, 693–716.Google Scholar
  23. Gunter, W. D., & Perkins, E. H. (1993). Aquifer disposal of CO2-rich gases—reaction design for added capacity. Energy Conversion and Management, 34, 941–948.CrossRefGoogle Scholar
  24. Gwinner, M. (1971). Geologie der Alpen. Stratigraphie, Paläogeographie, Tektonik (477 pp.) E. Schweizerbart’sche Verlagsbuchhandlung.Google Scholar
  25. Harrison, W. J., Wendlandt, R. F., & Sloan, E. D. (1995). Geochemical interactions resulting from carbon dioxide disposal on the seafloor. Applied Geochemisty, 10, 461–475.CrossRefGoogle Scholar
  26. Hepple, R. P., & Benson, S. M. (2005). Geologic storage of carbon dioxide as a climate change mitigation strategy: Performance requirements and the implications of surface seepage. Environmental Geology, 47, 576–585.CrossRefGoogle Scholar
  27. Holloway, S. (1997). An overview of the underground disposal of carbon dioxide. Energy Conversion and Management, 38, S193–S198.CrossRefGoogle Scholar
  28. IEA-GHG. (2009). Development of storage coefficients for CO 2 storage in deep saline formations (118 pp). Technical study report 2009/13. Stoke Orchard (UK): IEA Greenhouse Gas R&D Programme.Google Scholar
  29. IPCC. (2005). IPCC special report on carbon dioxide capture and storage. In: Prepared by working group III of the intergovernmental panel on climate change (442 pp). Cambridge, United Kingdom and NewYork, NY, USA: Cambridge University Press.Google Scholar
  30. Jenny, J., Burri, J.-P., Muralt, R., Pugin, A., Schegg, R., Ungemach, P., et al. (1995). Le forage géothermique de Thônex (Canton de Genève): Aspects stratigraphiques, tectoniques, diagénétiques, géophysiques et hydrogéologiques. Eclogae Geologicae Helvetiae, 88, 365–396.Google Scholar
  31. Jordan, P. (2007). Sammelprofile der Sedimentgesteine der verschiedenen geologisch-tektonischen Einheiten der Schweiz. Arbeitsbericht NAB 07-35 (103 pp). Wettingen: Nagra.Google Scholar
  32. Kastrup, U., Deichmann, N., Frohlich, A., & Giardini, D. (2007). Evidence for an active fault below the northwestern Alpine foreland of Switzerland. Geophysical Journal International, 169, 1273–1288.CrossRefGoogle Scholar
  33. Kastrup, U., Zoback, M.L., Deichmann, N., Evans, K.F., Giardini, D., Michael, A.J. (2004). Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversion of fault plane solutions. Journal of Geophysical Research 109(B1). doi: 10.1029/2003JB002550B01402.
  34. Keller, B. (1992). Hydrogeologie des schweizerischen Molasse-Beckens: Aktueller Wissensstand und weiterführende Betrachtungen. Eclogae Geologicae Helvetiae, 85, 611–651.Google Scholar
  35. Kharaka, Y. K., Cole, D. R., Hovorka, S. D., Gunter, W. D., Knauss, K. G., & Freifeld, B. M. (2006). Gas-water-rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins. Geology, 34, 577–580.CrossRefGoogle Scholar
  36. Kimmeier, F., Perrochet, P., Andrews, R., Kiraly, L. (1985). Simulation par Modèle Mathématique des Ecoulements Souterrains entre les Alpes et la Forêt Noire – Partie A: Modèle Régional – Partie B: Modèle Local (Nord de la Suisse). Nagra Technischer Bericht NTB 84-50 (190 pp). Wettingen: Nagra.Google Scholar
  37. Küpfer, T., Hufschmied, P., & Pasquier, F. (1989). Hydraulische Tests in Tiefbohrungen der Nagra. Nagra informiert, 11, 3–4.Google Scholar
  38. Lahusen, P. H. (1992). Hydrocarbon exploration in the Swiss Molasse Basin. Eclogae Geologicae Helvetiae, 85, 707–714.Google Scholar
  39. Laubscher, H. (1961). Die Fernschubhypothese der Jurafaltung. Eclogae Geologicae Helvetiae, 54, 221–281.Google Scholar
  40. Lindeberg, E. & Bergmo, P. (2002). The long-term fate of CO2 injected into an aquifer. In: Proceedings of 6th international conference on greenhouse gas technologies, pp. 6, Kyoto.Google Scholar
  41. Lohr, J. (1967). Die seismischen Geschwindigkeiten in der Ostschweiz. Bulletin der Vereinigung schweizerischer Petroleum-Geologen und -Ingenieure, 34, 29–38.Google Scholar
  42. Mao, S. D., & Duan, Z. H. (2009). The viscosity of aqueous alkali-chloride solutions up to 623 K, 1000 bar, and high ionic strength. International Journal of Thermophysics, 30, 1510–1523.CrossRefGoogle Scholar
  43. Matter, A., Peters, T., Bläsi, H.-R., Schenker, F., Weiss, H. P. (1988). Sondierbohrung Schafisheim. Geologie, Textband. Nagra Technischer Bericht NTB 86-03(321 pp). Wettingen: Nagra.Google Scholar
  44. Mazurek, M., Hurford, A. J., & Leu, W. (2006). Unravelling the multi-stage burial history of the Swiss Molasse Basin: Integration of apatite fission track, vitrinite reflectance and biomarker isomerisation analysis. Basin Research, 18, 27–50.CrossRefGoogle Scholar
  45. Mazurek, M. & Peters, T. (1992). Petrographie des kristallinen Grundgebirges der Nordschweiz und Systematik der herzynischen Granite. Schweizerische Mineralogische und Petrographische Mitteilungen 11–35.Google Scholar
  46. Michard, G., Pearce, J. M., & Gautschi, A. (1996). Chemical evolution of waters during long term interaction with granitic rocks in northern Switzerland. Applied Geochemistry, 11, 757–774.CrossRefGoogle Scholar
  47. Micholet, J. (1992). Le puits de Thoune: Forage d’exploration pétrolière en Suise, Consortium Pétrolier Fribourgeois et Bernois. Bulletin der Vereinigung schweizerischer Petroleum-Geologen und -Ingenieure, 58, 23–32.Google Scholar
  48. Mosar, J. (1999). Present-day and future tectonic underplating in the western Swiss Alps: reconciliation of basement–wrench-faulting and décollement folding of the Jura and Molasse basin in the Alpine foreland. Earth and Planetary Science Letters, 173, 143–155.CrossRefGoogle Scholar
  49. Müller, W. H., Naef, H., & Graf, H. R. (2002). Geologische Entwicklung der Nordschweiz, Neotektonik und Langzeitszenarien Zürcher Weinland. (p. 237). Nagra: Technischer Bericht 99–08.Google Scholar
  50. Muralt, R., Vuataz, F., Schönborn, G., Sommaruga, A., & Jenny, J. (1997). Intégration des méthodes hydrochimiques, géologiques et géophysiques pour la prospection d’une nouvelle ressource en eau thermale. Cas d’Yverdon-les-Bains, pied du Jura. Eclogae Geologicae Helvetiae, 90, 179–197.Google Scholar
  51. Naef, H. (2006). Stratigraphie, Mächtigkeit und Lithofazies der mesozoischen Formationen in der Nordschweiz. Eine Kompilation von Bohrungen, Übersichts- und Aufschlussprofilen. Arbeitsbericht NAB 06-26 (71 pp). Wettingen: Nagra.Google Scholar
  52. Nagra. (1985). Sondierbohrung Böttstein. Untersuchungsbericht. Textband. Nagra Technischer Bericht NTB 85-01 (190 pp). Wettingen: Nagra.Google Scholar
  53. Nagra. (1988). Sedimentstudie - Zwischenbericht 1988. Möglichkeiten zur Endlagerung langlebiger radioaktiver Abfälle in den Sedimenten der Schweiz. Technischer Bericht 88-25 (40 pp). Wettingen: Nagra.Google Scholar
  54. Nagra. (1989). Sondierbohrung Weiach - Untersuchungsbericht. Technischer Bericht 88-08 (438 pp). Wettingen: Nagra.Google Scholar
  55. Nagra. (1990). Sondierbohrung Riniken - Untersuchungsbericht. Technischer Bericht 88-09 (125 pp). Wettingen: Nagra.Google Scholar
  56. Nagra. (1991). Sondierbohrung Leuggern. Untersuchungsbericht. Textband. Nagra Technischer Bericht NTB 88-10 (168 pp). Wettingen: Nagra.Google Scholar
  57. Nagra. (2002). Projekt Opalinuston—Synthese der geowissenschaftlichen Untersuchungsergebnisse—Entsorgungsnachweis für abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfälle. Technischer Bericht 02-03 (659 pp). Wettingen: Nagra.Google Scholar
  58. Nagra. (2008). Vorschlag geologischer Standortgebiete für das SMA- und das HAA-Lager. Geologische Grundlagen. Nagra Technischer Bericht NTB 08-04 (439 pp). Wettingen: Nagra.Google Scholar
  59. Oelkers, E. H., Gislason, S. R., & Matter, J. (2008). Mineral carbonation of CO2. Elements, 4, 333–337.CrossRefGoogle Scholar
  60. Pearson, F. J., Balderer, W., Loosli, H. H., Lehmann, B. E., Matter, A., Peters, T., et al. (1991). Applied isotope hydrogeology: A case study in Northern Switzerland (p. 460). Amsterdam: Elsevier Scientific Publishers.Google Scholar
  61. Peters, T., Matter, A., Meyer, J., Isenschmid, C., Ziegler, H. J. (1989). Sondierbohrung Kaisten. Geologie, Textband Nagra Technischer Bericht NTB 86-04 (286 pp). Wettingen: Nagra.Google Scholar
  62. Pfiffner, A., Erard, P.-F., & Stäuble, M. (1997). Two cross sections through the Swiss Molasse Basin (lines E4–E6, W1, W7–W10). In A. Pfiffner, P. Lehner, P. Heitzmann, S. Mueller, & A. Steck (Eds.), Deep structure of the Swiss Alps. Results of NRP 20 (pp. 64–72). Basel: Birkhäuser.Google Scholar
  63. Portier, S., & Rochelle, C. (2005). Modelling CO2 solubility in pure water and NaCl-type waters from 0 to 300°C and from 1 to 300 bar: Application to the Utsira formation at Sleipner. Chemical Geology, 217, 187–199.CrossRefGoogle Scholar
  64. Ramseyer, K. (1987). Diagenese des Buntsandsteins und ihre Beziehung zur tektonischen Entwicklung der Nordschweiz. Eclogae Geologicae Helvetiae, 80, 383–395.Google Scholar
  65. Rybach, L. (1992). Geothermal potential of the Swiss Molasse Basin. Eclogae Geologicae Helvetiae, 85, 733–744.Google Scholar
  66. Rybach, L., Büchi, U. P., Bodmer, P., Griesser, J.-C., Israng, L., Kappeler, S., et al. (1981). Geothermische Datensynthese der Schweiz. Schriftreihe des Bundesamtes für Energiewirtschaft, Studie Nr. 26 (p. 122). Bern: Bundesamt für Energiewirtschaft.Google Scholar
  67. Rybach, L., Eugster, W., & Griesser, J.-C. (1987). Die Geothermische Verhältnisse in der Nordschweiz. Eclogae Geologicae Helvetiae, 80, 521–534.Google Scholar
  68. Schegg, R., Cornford, C., & Leu, W. (1999). Migration and accumulation of hydrocarbons in the Swiss Molasse Basin: Implications of a 2D basin modeling study. Marine and Petroleum Geology, 16, 511–531.CrossRefGoogle Scholar
  69. Schegg, R., & Leu, W. (1998). Analysis of erosion events and paleogeothermal gradients in the North Alpine Foreland Basin of Switzerland. In: S. J. Düppenbecker, & J. E. Iliffe (Eds.), Basin modelling: Practice and progress (pp. 137–155). Geological Society Special Publication no. 141.Google Scholar
  70. Schegg, R., Leu, W., Cornford, C., & Allen, P. A. (1997). New coalification profiles in the Swiss Molasse Basin: Implications for the thermal and geodynamic evolution of the Alpine Foreland. Eclogae Geologicae Helvetiae, 90, 79–96.Google Scholar
  71. Schmassmann, H. (1990). Hydrochemische Synthese Nordschweiz: Tertiär- und Malm-Aquifere. Nagra Technische Bericht NTB 88-07 (244 pp). Wettingen: Nagra.Google Scholar
  72. Schmassmann, H., Balderer, W., Kanz, W., Pekdeger, A. (1984). Beschaffenheit der Tiefengrundwässer in der zentralen Nordschweiz und angrenzenden Gebieten. Nagra Technischer Bericht NTB 84-21 (335 pp). Wettingen: Nagra.Google Scholar
  73. Schmassmann, H., Kullin, M., Schneemann, K. (1992). Hydrochemische Synthese Nordschweiz: Buntsandstein-, Perm-, und Kristallin-Aquifere. Nagra Technischer Bericht NTB 91-30 (493 pp). Wettingen: Nagra.Google Scholar
  74. Schrader, F. (1988). Das regionale Gefüge der Drucklösungsdeformation an Geröllen im westlichen Molassebecken. Geologische Rundschau, 77, 347–369.CrossRefGoogle Scholar
  75. SFOE. (2007). Energy perspectives for 2035. Management summary (p. 20). Bern: Swiss Federal Office of Energy (SFOE).Google Scholar
  76. Signer, C., & Gorin, G. E. (1995). New geological observations between the Jura and the Alps in the Geneva Area, as derived from reflection seismic data. Eclogae Geologicae Helvetiae, 88, 235–265.Google Scholar
  77. Signorelli, S., & Kohl, T. (2006). Geothermischer Ressourcenatlas der Nordschweiz. Gebiet des nördlichen Schweizer Mittellandes (96 pp). Beiträge zur Geologie der Schweiz. Schweizerische Geophysikalische Kommission.Google Scholar
  78. Solomon, S. (2007). Carbon dioxide storage: Geological security and environmental issues—Case study on the Sleipner gas field in Norway (p. 126). Oslo: Environmental Foundation Bellona.Google Scholar
  79. Sommaruga, A. (1997). Geology of the Central Jura and the Molasse Basin: New Insight into an Evaporite-Based Foreland Fold and Thrust Belt. Unpub. PhD Thesis (176 pp). Neuchâtel: Université de Neuchâtel.Google Scholar
  80. Sommaruga, A. (1999). Décollement tectonics in the Jura foreland fold and thrust belt. Marine and Petroleum Geology, 16, 11–134.CrossRefGoogle Scholar
  81. Sommaruga, A. & Eichenberger, U. (2010). Elevation maps and vertical thickness maps, enclosures 5 and 6. In: U. Eichenberger, A. Sommaruga, F. Marillier (Eds.), Seismic Atlas of the Swiss Molasse Basin. Swiss Geophysical Commission and Swiss Federal Office of Topography, Swiss Geological Survey. http:\\www.sgpk.ethz.ch.
  82. Span, R., & Wagner, W. (1996). A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical & Chemical Reference Data, 25, 1509–1596.CrossRefGoogle Scholar
  83. Thouvenot, F., Frechet, J., Tapponnier, P., Thomas, J. C., Le Brun, B., Menard, G., et al. (1998). The M-L 5.3 Epagny (French Alps) earthquake of (1996 July 15: A long-awaited event on the Vuache Fault. Geophysical Journal International, 135, 876–892.CrossRefGoogle Scholar
  84. Thury, M., Gautschi, A., Mazurek, M., Müller, W.H., Naef, H., Pearson, F.J., Vomvoris, S., Wilson, W. (1994). Geology and Hydrogeology of the Crystalline Basement of Northern Switzerland. Technical Report 93-01 (400 pp). Wettingen: Nagra.Google Scholar
  85. Toth, J. (1995). Hydraulic conductivity in large sedimentary basins. Hydrogeology Journal, 3, 4–16.CrossRefGoogle Scholar
  86. Trümpy, R. (1980). Geology of Switzerland: a guide-book. Part A: An outline of the geology of Switzerland (p. 104). Basel: Wepf & Co. Publishers.Google Scholar
  87. US-DOE. (2008). Carbon sequestration atlas of the United States and Canada (2nd ed., p. 139). USA: Department of Energy.Google Scholar
  88. Vollmayr, T. (1992). Strukturelle Ergebnisse der Kohlenwasserstoffexploration im Gebiet von Thun, Schweiz. Eclogae Geologicae Helvetiae, 85, 531–539.Google Scholar
  89. Vollmayr, T., & Wendt, A. (1987). Die Erdgasbohrung Entlebuch 1, ein Tiefenaufschluss am Alpennordrand. Bulletin der Vereinigung schweizerischer Petroleum-Geologen und -Ingenieure, 53, 67–79.Google Scholar
  90. Vuataz, F. (1982). Hydrogéologie, géochimie et géothermie des eaux thermales de Suisse et des région alpines limitrophes. Matériaux Pour la Géologie de la Suisse, Série Hydrologie, 29, 174.Google Scholar
  91. Wildenborg, T., Holloway, S., Hendriks, C., Kreft, E., Lokhorst, A., Brook, M., Brandsma, R., Egberts, P., Larsen, M. (2005). Building the cost curve of CO 2 storage: European sector (162 pp). Netherlands: IEA GHG and Institute of Applied Geoscience TNO.Google Scholar
  92. Xu, T. F., Apps, J. A., & Pruess, K. (2004). Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Applied Geochemistry, 19, 917–936.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2010

Authors and Affiliations

  • Gabriel Chevalier
    • 1
  • Larryn W. Diamond
    • 1
    Email author
  • Werner Leu
    • 2
  1. 1.Rock–Water Interaction Group, Institute of Geological SciencesUniversity of BernBernSwitzerland
  2. 2.Geoform Ltd.MinusioSwitzerland

Personalised recommendations