Swiss Journal of Geosciences

, Volume 103, Issue 2, pp 211–233 | Cite as

CAD assessment of the posture and range of motion of Kentrosaurus aethiopicus Hennig 1915

  • Heinrich MallisonEmail author


A computer aided design analysis using high-resolution laser scans of the bones of the stegosaur Kentrosaurus aethiopicus Hennig 1915 from the Late Jurassic Tendaguru Formation indicates that in the habitual walking pose the forelimbs were probably held erect, and that strong humeral flexion and abduction mainly occurred in a defensive stance. Rapid gaits with unsupported phases could not be used. The neck allowed sufficient lateral flexion to guarantee good sight in all directions including posteriorly. The tail covered an arch of roughly 180° and had sufficient range to be used as a weapon. Possibly, the animal could accomplish tail blows against specific targets in sight. Also, a tripodal pose is suggested to have been possible, roughly doubling the maximum vertical feeding height of Kentrosaurus.


Stegosauria Kentrosaurus Tendaguru Formation Late Jurassic Digital skeleton 3D CAD assessment 



Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin. Collection numbers for reptiles MB.R.####, provisional collection numbers MB.I.####


Institut für Geowissenschaften der Eberhard-Karls-Universität Tübingen. Collection numbers GPIT ###


Freie Universität Berlin. Collection numbers of osteological collection IPFUB OS ##


osteologically neutral position. Two vertebrae are in ONP if their zygapophyses fully overlap, and the centra faces are parallel (or, if the centra and haemapophyses are aligned for maximum contact area)



D. Schwarz-Wings (MFN) earned my gratitude by providing access to, going in search for, and re-inventorying all Kentrosaurus material in the MFN collections, as well as granting access to the digital bone files. At the IFGT, A. Hohloch, J. Hinz and R. Schellhorn (Eberhard-Karls-Universität Tübingen) all aided me greatly. H.-J. ‘Kirby’ Siber and the entire Aathal museum crew are thanked for the Stegosaur meeting, which inspired this work. H.-U. Pfretzschner (Eberhard-Karls-Universität Tübingen) guided me into biomechanics and in many discussions greatly aided the development of virtual skeletons. K. Carpenter (Denver Museum of Nature and Science) kindled my general interest in tail mobility. K. Stevens (University of Oregon), A. Christian and G. Dzemski (University of Flensburg), M. Taylor (University College London), M. Wedel (Western University of Health Sciences, Pomona, California) and M. Bonnan (Western Illinois University) patiently discussed skeletal posture and mobility with me, and thus earned my heartfelt thanks. Reviews by D. Henderson (Royal Tyrrell Museum) and W. Sellers (University of Manchester) greatly improved the manuscript.


  1. Aberhan, M., Bussert, R., Heinrich, W., Schrank, E., Schultka, S., Sames, B., et al. (2002). Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania). Mitteilungen des Museum für Naturkunde Berlin, Geowissenschaftliche Reihe, 5, 19–44.CrossRefGoogle Scholar
  2. Apesteguia, S. (2005). Evolution of the hyposhene–hypantrum complex within Sauropoda. In V. Tidwell & K. Carpenter (Eds.), Thunder lizards: The sauropodomorph dinosaurs, life of the past series (pp. 248–267). Bloomington: Indiana University Press.Google Scholar
  3. Arbour, V. M. (2009). Estimating impact forces of tail club strikes by ankylosaurid dinosaurs. PLoS ONE 4, e6738. doi: 10.371/journal.pone.0006738.
  4. Bakker, R. T. (1986). The dinosaur heresis (482 pp). New York: William Morrow and Co.Google Scholar
  5. Bonaparte, J. F. (1971). Los tetrapodos del sector superior de la Formation Los Colorados, La Rioja, Argentina (Triasico Superior). Opera Lilloana, 22, 1–183.Google Scholar
  6. Bonnan, M. F. (2003). The evolution of manus shape in sauropod dinosaurs: implications for functional morphology, forelimb orientation, and phylogeny. Journal of Vertebrate Paleontology, 23, 595–613.CrossRefGoogle Scholar
  7. Bonnan, M. F., Sandrik, J. L., Nishiwaki, T., Wilhite, D. R., & Elsey, R. (2009). Calcified cartilage shape in extant archosaur long bones reflects overlying joint shape in load-bearing elements: implications for inferring dinosaur joint shape. Journal of Vertebrate Paleontology, 29(Suppl 3), 67A–68A.Google Scholar
  8. Bonnan, M. F., & Senter, P. (2007). Were the basal sauropodomorph dinosaurs Plateosaurus and Massospondylus habitual quadrupeds? Evolution and palaeobiology of early sauropodomorph dinosaurs. Special Papers in Palaeontology, 77, 139–155.Google Scholar
  9. Carpenter, K. (1998). Armor of Stegosaurus stenops, and the taphonomic history of a new specimen from Garden Park Colorado. The Upper Jurassic Morrison Formation: An interdisciplinary study. Part 1. Modern Geology, 22, 127–144.Google Scholar
  10. Carpenter, K. (2002). Forelimb biomechanics of nonavian theropod dinosaurs in predation. Senckenbergiana Lethaea, 82, 59–76.CrossRefGoogle Scholar
  11. Carpenter, K., Sanders, F., McWhinney, L. A., & Wood, L. (2005). Evidence for predator-prey relationships. Examples for Allosaurus and Stegosaurus. In K. Carpenter (Ed.), The carnivorous dinosaurs (pp. 325–350). Bloomington: Indiana University Press.Google Scholar
  12. Carpenter, K., & Smith, M. (2001). Forelimb osteology and biomechanics of Tyrannosaurus rex. In D. H. Tanke & K. Carpenter (Eds.), Mesozoic vertebrate life (pp. 90–116). Bloomington: Indiana University Press.Google Scholar
  13. Christian, A., & Dzemski, G. (2007). Reconstruction of the cervical skeleton posture of Brachiosaurus brancai Janensch 1914 by an analysis of the intervertebral stress along the neck and a comparison with the results of different approaches. Fossil Record, 10, 38–49.CrossRefGoogle Scholar
  14. Christiansen, P. (1996). The “whiplash” tail of diplodocid sauropods: was it really a weapon? In: Morales, M. (Ed.), The Continental Jurassic. The Museum of Northern Arizona Bulletin (Vol. 60, pp. 51–58).Google Scholar
  15. Dodson, P., Forster, C. A., & Sampson, S. D. (2004). Ceratopsidae. In D. B. Weishampel, P. Dodson, & H. Osmolska (Eds.), The Dinosauria (2nd ed., pp. 494–513). Berkeley: University of California Press.Google Scholar
  16. Faux, C. M., & Padian, K. (2007). The opisthotonic posture of vertebrate skeletons: post-mortem contraction or death throes? Paleobiology, 33, 201–226.CrossRefGoogle Scholar
  17. Fujiwara, S. (2009). A reevaluation of the manus structure in Triceratops (Ceratopsia: Ceratopsidae). Journal of Vertebrate Paleontology, 29, 1136–1147.CrossRefGoogle Scholar
  18. Fujiwara, S., Kuwazuru, O., Inuzuka, N., & Yoshikawa, N. (2009). Relationship between scapula position and structural strength of rib cage in quadrupedal animals. Journal of Morphology, 270, 1084–1094.CrossRefGoogle Scholar
  19. Galton, P. M. (1982). The postcranial anatomy of stegosaurian dinosaur Kentrosaurus from the Upper Jurassic of Tanzania, East Africa. Geologica et Palaeontologica, 15, 139–165.Google Scholar
  20. Galton, P. M. (1986). Prosauropod dinosaur Plateosaurus (=Gresslyosaurus) (Saurischia: Sauropodomorpha) from the Upper Triassic of Switzerland. Geologica et Palaeontologica, 20, 167–183.Google Scholar
  21. Galton, P. M. (1988). Skull bones and endocranial casts of stegosaurian dinosaur Kentrosaurus Hennig, 1915 from Upper Jurassic of Tanzania, East Africa. Geologica et Palaeontologica, 22, 123–143.Google Scholar
  22. Galton, P. M. (1990). Basal sauropodomorpha—Prosauropoda. In D. B. Weishampel, P. Dodson, & H. Osmolska (Eds.), The Dinosauria (pp. 320–344). Berkeley: University of California Press.Google Scholar
  23. Galton, P. M., & Upchurch, P. (2004). Stegosauria. In D. B. Weishampel, P. Dodson, & H. Osmolska (Eds.), The Dinosauria (2nd ed., pp. 343–362). Berkeley: University of California Press.Google Scholar
  24. Gatesy, S. M., Bäker, M., & Hutchinson, J. R. (2009). Constraint-based exclusion of limb poses for reconstruction theropod dinosaur locomotion. Journal of Vertebrate Paleontology, 29, 535–544.CrossRefGoogle Scholar
  25. Gillette, D. D., & Ray, C. E. (1981). Glyptodonts of North America. Smithsonian Contributions to Paleobiology, 40, 1–255.Google Scholar
  26. Gilmore, C. W. (1914). Osteology of the armored Dinosauria in the United States National Museum, with special reference to the genus Stegosaurus. United States National Museum Bulletin, 89, 1–136.Google Scholar
  27. Gishlick, A. D. (2001). The function of the manus and forelimb of Deinonychus antirrhopus and its importance for the origin of avian flight. In J. Gauthier & L. F. Gall (Eds.), New perspectives on the origin and early evolution of birds (pp. 301–318). New Haven: Yale Peabody Museum.Google Scholar
  28. Graf, J., Stofft, E., Freese, U., & Niethard, F. U. (1993). The ultrastructure of articular cartilage of the chicken’s knee joint. International Orthopedics, 17, 113–119.Google Scholar
  29. Heinrich, W. (1999). The taphonomy of dinosaurs from the Upper Jurassic of Tendaguru (Tanzania) based on field sketches of the German Tendaguru Expedition (1909–1913). Mitteilungen Museum für Naturkunde Berlin, Geowissenschaftliche Reihe, 2, 25–61.Google Scholar
  30. Henderson, D. M. (1999). Estimating the masses and centers of masses of extinct animals by 3-D mathematical slicing. Paleobiology, 25, 88–106.Google Scholar
  31. Hennig, E. (1913). Über dorsale Wirbelsäulenkrümmung fossiler Vertebraten. Centralblatt für Mineralogie, Geologie und Paläontologie, Stuttgart, 1913, 575–577.Google Scholar
  32. Hennig, E. (1915). Kentrosaurus aethiopicus der Stegosauride des Tendaguru. Sitzungsberichte der Gesellschaft naturforschender Freunde zu Berlin, 1915, 219–247.Google Scholar
  33. Hennig, E. (1916a). Kentrurosaurus, non Doryphorosaurus. Centralblatt für Mineralogie, Geologie und Paläontologie, Stuttgart, 1916, p 578.Google Scholar
  34. Hennig, E. (1916b). Zweite Mitteilung über den Stegosauriden vom Tendaguru. Sitzungsberichte der Gesellschaft naturforschender Freunde zu Berlin, 1916, 175–182.Google Scholar
  35. Hennig, E. (1925). Kentrurosaurus aethiopicus. Die Stegosaurier-Funde vom Tendaguru, Deutsch-Ostafrika. Palaeontographica, Supplement 7, 101–254.Google Scholar
  36. Hildebrand, M., & Goslow, G. E. (2003). Vergleichende und funktionelle Anatomie der Wirbeltiere. Berlin: Springer.Google Scholar
  37. Horner, J. R., Weishampel, D. B., & Forster, C. A. (2004). Hadrosauridae. In D. B. Weishampel, P. Dodson, & H. Osmolska (Eds.), The Dinosauria (2nd ed., pp. 438–463). Berkeley: University of California Press.Google Scholar
  38. von Huene, F. (1926). Vollständige Osteologie eines Plateosauriden aus dem schwäbischen Keuper. Geologische und Palaeontologische Abhandlungen, Neue Folge, 15, 139–179.Google Scholar
  39. Janensch, W. (1914). Übersicht über der Wirbeltierfauna der Tendaguru-Schichten nebst einer kurzen Charakterisierung der neu aufgeführten Arten von Sauropoden. Archiv für Biontologie, 3, 81–110.Google Scholar
  40. Janensch, W. (1925). Ein aufgestelltes Skelett des Stegosauriers Kentrurosaurus aethiopicus Hennig 1915 aus den Tendaguru-Schichten Deutsch-Ostafrikas. Palaeontographica, Supplement 7, 257–276.Google Scholar
  41. Kummer, B. (2005). Biomechanik. Köln: Deutscher Ärzte-Verlag.Google Scholar
  42. Lockley, M. G., & Hunt, A. P. (1998). A probable stegosaur track from the Morrison Formation of Utah. Modern Geology, 23, 331–342.Google Scholar
  43. Lull, R. S. (1910). Stegosaurus ungulatus Marsh, recently mounted at the Peabody Museum of Yale University. The American Journal of Science (Series 4), 30, 361–377.Google Scholar
  44. Maidment, S. C. R., Norman, D. B., Barret, P. M., & Upchurch, P. (2008). Systematics and phylogeny of Stegosauria (Dinosauria: Ornithischia). Journal of Systematic Palaeontology, 6, 367–407.CrossRefGoogle Scholar
  45. Maier, G. (2003). African dinosaurs unearthed: The Tendaguru expeditions. Life of the past series. Bloomington: Indiana University Press.Google Scholar
  46. Mallison, H. (2010a). The real lectotype of Kentrosaurus aethiopicus Hennig 1915. Neues Jahrbuch for Geologie und Paläontologie (in press).Google Scholar
  47. Mallison, H. (2010b). The digital Plateosaurus I: body mass, mass distribution, and posture assessed using CAD and CAE on a digitally mounted complete skeleton. Palaeontologia Electronica A 13, 26.Google Scholar
  48. Mallison, H. (2010c). The digital Plateosaurus II: an assessment of the range of motion of the limbs and vertebral column and of previous reconstructions using a digital skeletal mount. Acta Palaeontologica Polonica 55. doi: 10.4202/app.2009.0075 (in press).
  49. Mallison, H. (2010d). Plateosaurus in 3D: How CAD models and kinetic/dynamic modeling help bringing an extinct animal to life. In: N. Klein, K. Remes, C. Gee, & P. M. Sander (Eds.), Biology of the sauropod dinosaurs: understanding the life of giants. Life of the past series. Bloomington: Indiana University Press (in press).Google Scholar
  50. Mallison, H., Hohloch, A. & Pfretzschner, H. (2009). Mechanical digitizing for paleontology—new and improved techniques. Palaeontologia Electronica T 12, 41 pp.Google Scholar
  51. Marsh, O. C. (1880). Principal characters of American Jurassic dinosaurs, part III, 3rd Series. American Journal of Science 19, 253–259.Google Scholar
  52. Marsh, O. C. (1881). Principal characters of American Jurassic dinosaurs, part IV, 3rd Series. Spinal cord, limbs, and pelvis of Stegosaurus. American Journal of Science 21, 167–170.Google Scholar
  53. Marsh, O. C. (1891). Restoration of Stegosaurus, 3rd Series. American Journal of Science 42, 179–181.Google Scholar
  54. Marsh, O. C. (1896). The dinosaurs of North America. US Geological Survey Annual Report, 16, 142–230.Google Scholar
  55. Mateus, O., Maidment, S. C., & Christiansen, N. A. (2009). A new long-necked ‘sauropod-mimic’ stegosaur and the evolution of the plated dinosaurs. Proceedings of the Royal Society B: Biological Sciences, 276, 1815–1821.CrossRefGoogle Scholar
  56. McGinnia, P. M. (2004). Biomechanics of sports and exercise (2nd ed.). Champaign: Human Kinetics.Google Scholar
  57. McIntosh, J. (1990). Sauropoda. In D. B. Weishampel, P. Dodson, & H. Osmolska (Eds.), The Dinosauria (pp. 345–401). Berkeley: University of California Press.Google Scholar
  58. Milàn, J., & Chiappe, L. M. (2009). Geological Note: First American record of the Jurassic ichnospecies Deltapodus brodricki and a review of the fossil record of stegosaurian footprints. Journal of Geology, 117, 343–348.CrossRefGoogle Scholar
  59. Norell, M. A., & Makovicky, P. J. (1999). Important features of the dromaeosaurid skeleton II: information from newly collected specimens of Velociraptor mongoliensis. American Museum Novitates, 3282, 1–45.Google Scholar
  60. Norman, D. B., Sues, H.-D., Witmer, L. M., & Coria, R. A. (2004). Basal Ornithopoda. In D. B. Weishampel, P. Dodson, & H. Osmolska (Eds.), The Dinosauria (2nd ed., pp. 393–412). Berkeley: University of California Press.Google Scholar
  61. Organ, C. L. (2006). Biomechanics of ossified tendons in ornithopod dinosaurs. Paleobiology, 32, 652–665.CrossRefGoogle Scholar
  62. Ostrom, J. H. (1969). Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Peabody Museum of Natural History Bulletin, 30, 1–165.Google Scholar
  63. Paul, G. S. (1987). The science and art of restoring the life appearance of dinosaurs and their relatives. In S. J. Czerkas & E. C. Olsen (Eds.), Dinosaurs past and present I (pp. 4–49). Los Angeles: Natural History Museum of Los Angeles County.Google Scholar
  64. Remes, K. (2008). Evolution of the pectoral girdle and forelimb in Sauropodomorpha (Dinosauria, Saurischia): Osteology, myology and function. Unpublished Doctoral Dissertation, Ludwig-Maximilians Universität, München.
  65. Riggs, E. S. (1903). Brachiosaurus altithorax, the largest known dinosaur. American Journal of Science, 4, 299–306.CrossRefGoogle Scholar
  66. Schwarz, D., Wings, O., & Meyer, C. A. (2007). Supersizing the giants: first cartilage preservation at a sauropod dinosaur limb joint. Journal of the Geological Society London, 164, 61–65.CrossRefGoogle Scholar
  67. Seeley, H. G. (1892). Researches on the Structure, Organization, and Classification of the Fossil Reptilia. VII. Further Observations on Pareiasaurus. Philosophical Transactions of the Royal Society of London, Series B, 183, 311–370.CrossRefGoogle Scholar
  68. Senter, P. (2006a). Comparison of forelimb function between Deinonychus and Bambiraptor (Theropoda: Dromaeosauridae). Journal of Vertebrate Paleontology, 26, 897–906.CrossRefGoogle Scholar
  69. Senter, P. (2006b). Forelimb function in Ornitholestes hermanni Osborn (Dinosauria, Theropoda). Palaeontology, 49, 1029–1034.CrossRefGoogle Scholar
  70. Senter, P. (2010). Evidence for a sauropod-like metacarpal configuration in stegosaurian dinosaurs. Acta Palaeontologica Polonica 55. doi: 10.4202/app.2009.1105 (in press).
  71. Senter, P., & Parrish, J. M. (2005). Forelimb function in the theropod dinosaur Carnotaurus sastrei, and its behavioral implications. PaleoBios, 26, 7–17.Google Scholar
  72. Senter, P., & Robins, J. H. (2005). Range of motion in the forelimb of the theropod dinosaur Acrocanthosaurus atokensis, and implications for predatory behaviour. Journal of Zoology, 266, 307–318.CrossRefGoogle Scholar
  73. Sertich, J. J. W., & Loewen, M. A. (2010). A new basal Sauropodomorph Dinosaur from the Lower Jurassic Navajo Sandstone of Southern Utah. PLoS ONE 5, e9789. doi: 10.1371/journal.pone.0009789.
  74. Stevens, K. A., & Parrish, J. M. (1999). Neck posture and feeding habits of two Jurassic sauropod dinosaurs. Science, 284, 798–800.CrossRefGoogle Scholar
  75. Stevens, K. A., & Parrish, J. M. (2005a). Digital reconstructions of sauropod dinosaurs and implications for feeding. In K. A. Curry-Rogers & J. A. Wilson (Eds.), The sauropods: Evolution and paleobiology (pp. 178–200). Berkeley: University of California Press.Google Scholar
  76. Stevens, K. A., & Parrish, J. M. (2005b). Neck posture, dentition, and feeding strategies in Jurassic sauropod dinosaurs. In K. Carpenter & V. Tidwell (Eds.), Thunder lizards: The sauropodomorph dinosaurs (pp. 212–232). Bloomington: Indiana University Press.Google Scholar
  77. Taylor, M. P. (2009). A re-evaluation of Brachiosaurus altithorax Riggs 1903 (Dinosauria, Sauropoda) and its generic separation from Giraffatitan brancai (Janensch 1914). Journal of Vertebrate Paleontology, 29, 787–806.CrossRefGoogle Scholar
  78. Taylor, M. P., Wedel, M. J., & Naish, D. (2009). Head and neck posture in sauropod dinosaurs inferred from extant animals. Acta Palaeontologica Polonica, 54, 213–220. doi: 10.4202/app.2009.0007.CrossRefGoogle Scholar
  79. Upchurch, P., Barret, P. M., & Dodson, P. (2004). Sauropoda. In D. B. Weishampel, P. Dodson, & H. Osmolska (Eds.), The Dinosauria (2nd ed., pp. 259–322). Berkeley: University of California Press.Google Scholar
  80. Vickaryous, M. K., Maryanska, T., & Weishampel, D. B. (2004). Ankylosauria. In D. B. Weishampel, P. Dodson, & H. Osmolska (Eds.), The Dinosauria (2nd ed., pp. 363–392). Berkeley: University of California Press.Google Scholar
  81. Whyte, M. A., & Romano, M. (1994). Probable sauropod footprints from the Middle Jurassic of Yorkshire, England. Gaia, 10, 15–26.Google Scholar
  82. Whyte, M. A., & Romano, M. (2001). Probable stegosaurian dinosaur tracks from the Saltwick Formation (Middle Jurassic) of Yorkshire, England. Proceedings of the Geologists’ Association, 112, 45–54.CrossRefGoogle Scholar
  83. Wings, O., Schwarz, D., & Meyer, C. A. (2006). A preserved distal articular cartilage capsule at a humerus of the sauropod dinosaur Cetiosauriscus greppini and its taphonomical and palaeobiological implications. Hantkeniana 5, p. 111.Google Scholar

Copyright information

© Swiss Geological Society 2010

Authors and Affiliations

  1. 1.Museum für Naturkunde-Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt UniversityBerlinGermany

Personalised recommendations