Swiss Journal of Geosciences

, Volume 103, Issue 1, pp 101–119 | Cite as

Facies, depositional environment, and palaeoecology of the Middle Triassic Cassina beds (Meride Limestone, Monte San Giorgio, Switzerland)

  • Rudolf StockarEmail author


The Ladinian Cassina beds belong to the fossiliferous levels of the world-famous Middle Triassic Monte San Giorgio Lagerstätte (UNESCO World Heritage List, Canton Ticino, Southern Alps). Although they are a rich archive for the depositional environment of an important thanatocoenosis, previous excavations focused on vertebrates and particularly on marine reptiles. In 2006, the Museo Cantonale di Storia Naturale (Lugano) started a new research project focusing for the first time on microfacies, micropalaeontological, palaeoecological and taphonomic analyses. So far, the upper third of the sequence has been excavated on a surface of around 40 m2, and these new data complete those derived from new vertebrate finds (mainly fishes belonging to Saurichthys, Archaeosemionotus, Eosemionotus and Peltopleurus), allowing a better characterization of the basin. Background sedimentation on an anoxic to episodically suboxic seafloor resulted in a finely laminated succession of black shales and limestones, bearing a quasi-anaerobic biofacies, which is characterized by a monotypic benthic foraminiferal meiofauna and has been documented for the first time from the whole Monte San Giorgio sequence. Event deposition, testified by turbidites and volcaniclastic layers, is related to sediment input from basin margins and to distant volcanic eruptions, respectively. Fossil nekton points to an environment with only limited connection to the open sea. Terrestrial macroflora remains document the presence of emerged areas covered with vegetation and probably located relatively far away. Proliferation of benthic microbial mats is inferred on the basis of microfabrics, ecological considerations and taphonomic (both biostratinomic and diagenetic) features of the new vertebrate finds, whose excellent preservation is ascribed to sealing by biofilms. The occurrence of allochthonous elements allows an insight into the shallow-waters of the adjoining time-equivalent Salvatore platform. Finally, the available biostratigraphic data are critically reviewed.


Cassina beds Middle Triassic Monte San Giorgio Facies Palaeoecology Depositional environment 



During the first 3 years of excavations in the upper part of the Cassina beds, the author benefited from the help of colleagues and students from Swiss, German and Italian universities. He is indebted to Heinz Furrer, Silvio Renesto, Cristina Lombardo, Roberto Rettori, Toni Bürgin, Adriana Lòpez-Arbarello and Evelyn Kustatscher for the stimulating discussions about different aspects of the Cassina excavation, and to Remo Pagani, the landowner at Cassina, for his enthusiastic interest in the excavations. The author would like to acknowledge the hard work and unconditional commitment of many volunteers during the field work; nothing would have been possible without Urs Oberli, Sergio Pezzoli, Sergio Rampinelli, Margrit Pfister, and the many other “Cassina enthusiasts”. Many thanks to Stefano Doninelli (commissione parrocchiale Monte San Giorgio) for having friendly placed the Adenofora mountain refuge at our disposal, and to the municipality of Meride for the logistic support. Earlier drafts of the manuscript benefited from careful re-readings by Peter Baumgartner, Daniel Bernoulli and Silvio Renesto. The preparation of vertebrate and plant fossils was carried out by Heinz Lanz, Urs Oberli, Sergio Rampinelli, Debora Tollardo, Luca Zulliger, and the author. Financial support was granted by the Dipartimento del territorio del Cantone Ticino (Museo Cantonale di Storia Naturale) and the Swiss Federal Office for the Environment (FOEN). The author is grateful to the reviewers Rainer Brandner and Heinz Furrer, and to the editors Andreas Wetzel and Daniel Marty for constructive comments on the manuscript, which greatly improved the paper.


  1. Allison, P. A., Wignall, P. B., & Brett, C. E. (1995). Palaeo-oxygenation: Effects and recognition. In D. W. J. Bosence & P. A. Allison (Eds.), Marine palaeoenvironmental analysis from fossils (pp. 97–112). Bath: The Geological Society.Google Scholar
  2. Armostrong, H. A., & Brasier, M. D. (2005). Microfossils (296 pp). Malden: Blackwell.Google Scholar
  3. Bernasconi, S. M. (1994). Geochemical and microbial controls on dolomite formation in anoxic environments: A case study from the Middle Triassic (Ticino, Switzerland). Contributions to sedimentology, 19, 1–109. E. Schweizerbart. Stuttgart.Google Scholar
  4. Bernhard, J. M., & Reimers, C. E. (1991). Benthic foraminiferal population fluctuations related to anoxia: Santa Barbara Basin. Biogeochemistry, 15, 127–149.CrossRefGoogle Scholar
  5. Bernhard, J. M., & Sen Gupta, B. K. (1999). Foraminifera of oxygen-depleted environments. In B. K. Sen Gupta (Ed.), Modern foraminifera (pp. 201–216). Dordrecht: Kluwer.Google Scholar
  6. Bernoulli, D. (1964). Zur Geologie des Monte Generoso. Ein Beitrag zur Kenntnis der südalpinen Sedimente. Beiträge zur Geologischen Karte der Schweiz, N.F., 118, 1–134.Google Scholar
  7. Bernoulli, D., Govi, M., Graeter, P., Lehner, P., Reinhard, M., & Spicher, A. (1976). Geologischer Atlas der Schweiz 1:25000, Blatt 1353 Lugano (Atlasblatt 69). Schweizerische Geologische Kommission.Google Scholar
  8. Bowser, S. S., McGee-Russel, S. M., & Rieder, C. L. (1985). Digestion of prey in foraminifera is not anomalous: A correlation of light microscopic, cytochemical and HVEM techniques to study phagotrophy in two allogromiids. Journal of Ultrastructure and Molecular Structure Research, 94, 149–160.CrossRefGoogle Scholar
  9. Brack, P., & Rieber, H. (1993). Towards a better definition of the Anisian/Ladinian boundary: New biostratigraphic data and correlations of boundary sections from the Southern Alps. Eclogae Geologicae Helvetiae, 86, 415–527.Google Scholar
  10. Brack, P., Rieber, H., Mundil, R., Blendinger, W., & Maurer, F. (2007). Geometry and chronology of growth and drowning of Middle Triassic carbonate platforms (Cernera and Bivera/Clapsavon) in the Southern Alps (northern Italy). Swiss Journal of Geosciences, 100, 327–347.CrossRefGoogle Scholar
  11. Brack, P., Rieber, H., Nicora, A., & Mundil, R. (2005). The Global boundary Stratotype Section and Point (GSSP) of the Ladinian Stage (Middle Triassic) at Bagolino (Southern Alps, Northern Italy) and its implications for the Triassic time scale. Episodes, 28, 233–244.Google Scholar
  12. Brack, P., Rieber, H., & Urlichs, M. (1999). Pelagic successions in the Southern Alps and their correlation with the Germanic Middle Triassic. In G. H. Bachmann & I. Lerche (Eds.), Epicontinental Triassic. Zentralblatt für Geologie und Paläontologie (1998) Teil 1 (pp. 853–876). Stuttgart: E. Schweizerbart.Google Scholar
  13. Brett, C. E., & Baird, G. C. (1986). Comparative taphonomy: A key to paleoenvironmental interpretation based on fossil preservation. Palaios, 1, 207–227.CrossRefGoogle Scholar
  14. Brühwiler, T., Hochuli, P. A., Mundil, R., Schatz, W., & Brack, P. (2007). Bio- and chronostratigraphy of the Middle Triassic Reifling Formation in the westernmost Northern Calcareous Alps. Swiss Journal of Geosciences, 100, 443–455.CrossRefGoogle Scholar
  15. Brusca, C., Gaetani, M., Jadoul, F., & Viel, G. (1981). Paleogeografia e metallogenesi del Triassico Sudalpino. In P. Omenetto (Ed.), Correlazioni tra paleogeografia e mineralizzazioni. Memorie della Società Geologica Italiana, 22, 65–82.Google Scholar
  16. Bucur, I. I., & Enos, P. (2001). Middle Triassic dasyclad algae from Guizhou, China. Micropaleontology, 47, 317–338.CrossRefGoogle Scholar
  17. Bürgin, T. (1992). Basal Ray-finned fishes (Osteichthyes, Actinopterygii) from the Middle Triassic of Monte San Giorgio (Canton Tessin, Switzerland). Schweizerische Paläontologische Abhandlungen, 114, 1–164.Google Scholar
  18. Bürgin, T. (1995). Actinopterygian fishes (Osteichthyes; Actinopterygii) from the Kalkschieferzone (Uppermost Ladinian) near Meride (Canton Ticino, Southern Switzerland). Eclogae geologicae Helvetiae, 88, 803–826.Google Scholar
  19. Bürgin, T. (1999). Middle Triassic marine fish faunas from Switzerland. In G. Arratia & H.-P. Schultze (Eds.), Mesozoic fishes 2—systematics and fossil record (pp. 481–494). München: Pfeil.Google Scholar
  20. Bürgin, T. (2004). Eosemionotus ceresiensis sp. nov., a new semionotiform fish (Actinopterygii, Halecostomi) from the Middle Triassic of Monte San Giorgio (Southern Switzerland). In G. Arratia & A. Tintori (Eds.), Mesozoic fishes 3—systematics, paleoenvironments and biodiversity (pp. 239–251). München: Pfeil.Google Scholar
  21. Bürgin, T., Eichenberger U., Furrer. H., & Tschanz K. (1991). Die Prosanto-Formation—eine fischreiche Fossil-Lagerstätte in der Mitteltrias der Silvretta-Decke (Kanton Graubunden, Schweiz). Eclogae geologicae Helvetiae, 84, 921–990.Google Scholar
  22. Buzas, M. A., Hayek, L. C., Reed, S. A., & Jett, J. A. (2002). Foraminiferal densities over five years in the Indian River Lagoon, Florida: A model of pulsating patches. Journal of Foraminiferal Research, 32, 62–93.CrossRefGoogle Scholar
  23. Carroll, R. L., & Gaskill, P. (1985). The nothosaur Pachypleurosaurus and the origin of plesiosaurs. Philosophical Transactions of the Royal Society of London B, 309, 343–393.CrossRefGoogle Scholar
  24. Crasquin-Soleau, S., & Kershaw, S. (2005). Ostracod fauna from the Permian-Triassic boundary interval of South China (Huaying Mountains, eastern Sichuan Province): Palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 217, 131–141.CrossRefGoogle Scholar
  25. Deeke, W. (1889). Über Fische aus verschiedenen Horizonten der Trias. Palaeontographica, 35, 97–138.Google Scholar
  26. Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. In W. E. Ham (Ed.), Classification of carbonate rocks. American Association of Petroleum Geologists Memoir, 1, 108–121.Google Scholar
  27. Elder, R. L., & Smith, G. R. (1988). Fish taphonomy and environmental inference in paleolimnology. Palaeogeography, Palaeoclimatology, Palaeoecology, 62, 577–592.CrossRefGoogle Scholar
  28. Flügel, E. (2004). Microfacies of carbonate rocks. Analysis interpretation and application (976 pp). Heidelberg: Springer.Google Scholar
  29. Frauenfelder, A. (1916). Beiträge zur Geologie der Tessiner Kalkalpen. Eclogae Geologicae Helvetiae, 14, 247–367.Google Scholar
  30. Furrer, H. (1995). The Kalkschieferzone (Upper Meride Limestone; Ladinian) near Meride (Canton Ticino, Southern Switzerland) and the evolution of a Middle Triassic intraplatform basin. Eclogae Geologicae Helvetiae, 88, 827–852.Google Scholar
  31. Furrer, H. (1999a). New excavations in marine Middle Triassic Fossil-Lagerstätten at Monte San Giorgio (Canton Ticino, Southern Switzerland) and the Duncan Mountains near Davos (Canton Graubünden, Eastern Switzerland). In S. Renesto (Ed.), Third international symposium on lithographic limestones (pp. 85–88). Bergamo: Rivista del Museo Civico di Scienze naturali “Enrico Caffi”.Google Scholar
  32. Furrer, H. (1999b). Aktuelle Grabungen in den Unteren Meride-Kalken bei Acqua del Ghiffo. In Zoologisches Museum der Universität Zürich (Ed.), Fossilien und ihre Forschung in Geschichte und Gegenwart (pp. 87–103). Zürich: Zoologisches Museum der Universität Zürich.Google Scholar
  33. Furrer, H. (2001a). Fossil-Lagerstätten in the Lower Meride Limestone, Ladinian. Guide to the field trip to Acqua del Ghiffo near Crocifisso, Meride TI. International Meeting on Mesozoic Fishes 3—Systematics, Paleoenvironments and Biodiversity (pp. 1–11). Serpiano.Google Scholar
  34. Furrer, H. (2001b). Taphonomy and palaeoecology of fish beds in the Lower Meride Limestone (Ladinian, Middle Triassic) on Monte San Giorgio (Canton Ticino, Southern Switzerland). In A. Tintori (Ed.), International meeting on Mesozoic fishes 3—systematics, paleoenvironments and biodiversity (p. 29). Serpiano: Abstract Book.Google Scholar
  35. Furrer, H. (2003). Der Monte San Giorgio im Südtessin—Vom Berg der Saurier zur Fossil-Lagerstãtte internationaler Bedeutung. Neujahrsblatt der Naturforschenden Gesellschaft Zh, 206, 1–64.Google Scholar
  36. Furrer, H., Schaltegger, U., Ovtcharova, M., & Meister, P. (2008). U-Pb zircon age of volcaniclastic layers in Middle Triassic platform carbonates of the Austroalpine Silvretta nappe (Switzerland). Swiss Journal of Geosciences, 101, 595–603.CrossRefGoogle Scholar
  37. Gaetani, M., Gnaccolini, M., Poliani, G., Grignani, D., Gorza, M., & Martellini, L. (1992). An anoxic intraplatform basin in the Middle Triassic of Lombardy (Southern Alps, Italy): Anatomy of a hydrocarbon source. Rivista Italiana di Paleontologia e Stratigrafia, 97, 329–354.Google Scholar
  38. Gall, J.-C. (2001). Role of microbial mats. In D. E. G. Briggs & P. R. Crowther (Eds.), Palaeobiology II (pp. 280–284). Bodmin: Blackwell.Google Scholar
  39. Gianotti, R., & Tannoia, G. (1988). Elementi per una revisione stratigrafico-paleontologica del Trias medio superiore della regione compresa tra il Lario e il Ceresio. Atti Ticinensi di Scienze della Terra, 31, 434–445.Google Scholar
  40. Gooday, A. J., Bernhard, J. M., Levin, L. A., & Shur, S. B. (2000). Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: Taxonomic composition, diversity and relation to metazoan faunas. Deep Sea Research Part II: Topical Studies in Oceanography, 47, 25–54.CrossRefGoogle Scholar
  41. Gozzi, E. (2001). Swimming biomechanic of the Norian (Late Triassic) Saurichthys (Actinopterygii): Cruisers or improved fast-starters? In A. Tintori (Ed.), International Meeting on Mesozoic Fishes 3—Systematics, Paleoenvironments and Biodiversity (p. 37). Serpiano: Abstract Book.Google Scholar
  42. Güvenç T. (1979). Dasycladacées métaspondiles du Paléozoiques supérieur et du Trias. Bulletin des Centres de Recherches Exploration Production Elf-Aquitaine, 3, 625–637.Google Scholar
  43. Hänni, K. (2004). Die Gattung Ceresiosaurus. Ceresiosaurus calcagnii Peyer und Ceresiosaurus lanzi n. sp. (Lauriosauridae, Sauropterygia) (147 pp). Zürich: Vdf Hochschulverlag ETH Zürich.Google Scholar
  44. Hellmann, K. N., & Lippolt, H. J. (1981). Calibration of the Middle Triassic time scale by conventional K–Ar and 40Ar/39Ar dating of alkali feldspars. Journal of Geophysics, 50, 73–88.Google Scholar
  45. Hochuli, P. A., & Roghi, G. (2002). A palynological view on the Anisian/Ladinian boundary—new results from the Seceda section (Dolomites, Northern Italy). I. U. G. S. Commission on Triassic Stratigraphy, STS/IGCP, Field Meeting (pp. 29–30). Veszpröm: Program & Abstracts.Google Scholar
  46. Holcova, K. (1997). Can detailed sampling and taphonomical analysis of foraminiferal assemblages offer new data for paleoecological interpretation? Revue de Micropaléontologie, 40, 313–329.CrossRefGoogle Scholar
  47. Jones, W., & Charnock, M. A. (1985). Morphogroups of agglutinating foraminifera. Their life positions and feeding habits and potential applicability in (paleo)ecological studies. Revue de Paléobiologie, 42, 311–320.Google Scholar
  48. Josefson, A. B., & Widbom, B. (1988). Differential response of benthic macrofauna and meiofauna to hypoxia in the Gullmar fjord basin. Marine Biology, 100, 31–40.CrossRefGoogle Scholar
  49. Kahio, K. (1994). Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology, 22, 719–722.CrossRefGoogle Scholar
  50. Koutsoukos, E. A. M., Leary, P. N., & Hart, M. B. (1990). Latest Cenomanian—earliest Turonian low-oxygen tolerant foraminifera: A case-study from the Sergipe basin (N.E. Brasil) and the western Anglo-Paris Basin (southern England). Palaeogeography, Palaeoclimatology, Palaeoecology, 77, 145–177.CrossRefGoogle Scholar
  51. Krzeminski, W., & Lombardo, C. (2001). New fossil Ephemeroptera and Coleoptera from the Ladinian (Middle Triassic) of Canton Ticino (Switzerland). Rivista Italiana di Paleontologia e Stratigrafia, 107, 69–78.Google Scholar
  52. Kuhn-Schnyder, E. (1974). Die Triasfauna der Tessiner Kalkalpen. Neujahrsblatt der Naturforschenden Gesellschaft Zürich, 176, 1–119.Google Scholar
  53. Lethiers, F., & Whatley, R. (1994). The use of Ostracoda to reconstruct the oxygen levels of the Late Paleozoic oceans. Marine Micropaleontology, 24, 57–69.CrossRefGoogle Scholar
  54. Lombardo, C. (2001). Peltopleuriformes: Problems in the definition of a group. In A. Tintori, (Ed.). International Meeting on Mesozoic Fishes 3—Systematics, Paleoenvironments and Biodiversity (p. 48). Serpiano: Abstract Book.Google Scholar
  55. Lombardo, C. (2002). Caelatichthys gen. n.: A new palaeonisciform from the Middle Triassic of Northern Italy and Canton Ticino (Switzerland). Rivista Italiana di Paleontologia e Stratigrafia, 108, 399–414.Google Scholar
  56. Lombardo, C., & Tintori, A. (2004). New Perleidiforms from the Triassic of the Southern Alps and the revision of Serrolepis from the Triassic of Wüttemberg (Germany). In G. Arratia & A. Tintori (Eds.), Mesozoic fishes 3—systematics, paleoenvironments and biodiversity (pp. 179–196). München: Pfeil.Google Scholar
  57. Maurer, F., & Rettori, R. (2002). Middle Triassic Foraminifera from the Seceda Core (Dolomites, Northern Italy). Rivista Italiana di Paleontologia e Stratigrafia, 108, 391–398.Google Scholar
  58. McGrew, P. O. (1975). Taphonomy of Eocene fish from Fossil Basin, Wyoming. Fieldiana: Geology, 33, 257–270.Google Scholar
  59. Moodley, L., & Hess, C. (1992). Tolerance of infaunal benthic foraminifera for low and high oxygen concentrations. Biological Bulletin, 183, 94–98.CrossRefGoogle Scholar
  60. Moodley, L., Van der Zwaan, G. J., Herman, P. M. J., Kempers, L., & Van Breugel, P. (1997). Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista: Sarcodina). Marine Ecology Progress Series, 158, 151–163.CrossRefGoogle Scholar
  61. Müller, W., Schmid, R., & Vogt, P. (1964). Vulkanogene Lagen aus der Grenzbitumenzone (Mittlere Trias) des Monte San Giorgio in den Tessiner Kalkalpen. Eclogae geologicae Helvetiae, 57, 431–450.Google Scholar
  62. Müller-Merz, E., Berger, J.-P., Furrer, H., & Meyer, C. (2005). Paläontologie und Umwelt (92 pp). Zürich: Vdf Hochschulverlag ETH Zürich.Google Scholar
  63. Mundil, R., Brack, P., Meier, M., Rieber, H., & Oberli, F. (1996). High resolution U-Pb dating of Middle Triassic volcaniclastics: Time-scale calibration and verification of tuning parameters for carbonate sedimentation. Earth and Planetary Science Letters, 141, 137–151.CrossRefGoogle Scholar
  64. Murray, J. (2006). Ecology and applications of benthic foraminifera (426 pp). Cambridge: Cambridge University Press.Google Scholar
  65. Mutti, M., & Weissert, H. (1995). Triassic monsoonal climate and its signature in Ladinian-Carnian carbonate platforms. Journal of Sedimentary Research, 65, 357–367.Google Scholar
  66. Nosotti, S. (2007). Tanystropheus longobardicus (Reptilia, Protosauria): Re-interpretations of the anatomy based on new specimens from the Middle Triassic of Besano (Lombardy, Northern Italy). Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 35, 1–88.Google Scholar
  67. Oschmann, W. (1991). Anaerobic-poikiloaerobic-aerobic: A new zonation for modern and ancient neritic redox facies. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 565–571). Berlin: Springer.Google Scholar
  68. Oschmann, W. (2001). Oxygen in the ocean. In D. E. G. Briggs & P. R. Crowther (Eds.), Palaeobiology II (pp. 470–472). Bodmin: Blackwell.CrossRefGoogle Scholar
  69. Peyer, B. (1937). Die Triasfauna der Tessiner Kalkalpen XII. Macronemus bassanii Nopcsa. Abhandlungen der Schweizerischen Paläontologischen Gesellschaft, 59, 1–140.Google Scholar
  70. Picotti, V., Capozzi, R., Bertozzi, G., Mosca, F., Sitta, A., & Tornaghi, M. (2007). The Miocene petroleum system of the Northern Apennines in the central Po Plain (Italy). In O. Lacombe, J. Lavé, F. Roure, & J. Vergés (Eds.), Thrust belts and foreland basins. From fold kinematics to hydrocarbon systems (pp. 117–131). Heidelberg: Springer.Google Scholar
  71. Piros, O., & Preto, N. (2008). Dasycladalean algae distribution in ammonoid-bearing Middle Triassic platforms (Dolomites, Italy). Facies, 54, 581–595.CrossRefGoogle Scholar
  72. Renesto, S., & Stockar, R. (2009). Exceptional preservation of embryos in the actinopterygian Saurichthys from the Middle Triassic of Monte San Giorgio, Switzerland. Swiss Journal of Geosciences, 102, 323–330.CrossRefGoogle Scholar
  73. Renesto, S., Lombardo C., & Stockar R. (2008). New excavations in the Cassina levels (Monte San Giorgio, Middle Triassic): preliminary reports. 6th Swiss Geoscience Meeting (pp. 129–130). Lugano: Abstract Volume.Google Scholar
  74. Rhoads, D. C., & Morse, J. W. (1971). Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia, 4, 413–428.CrossRefGoogle Scholar
  75. Rieber, H. (1969). Daonellen aus der Grenzbitumenzone der mittleren Trias des Monte San Giorgio (Kt Tessin, Schweiz). Eclogae Geologicae Helvetiae, 62, 657–683.Google Scholar
  76. Rieber, H. (1973). Cephalopoden aus der Grenzbitumenzone (Mittlere Trias) des Monte San Giorgio (Kt Tessin/Schweiz). Schweizerische PaläontologischeAbhandlungen, 93, 1–96.Google Scholar
  77. Rieppel, O. (1985). Die Triasfauna der Tessiner Kalkalpen XXV. Die Gattung Saurichthys (Pisces, Actinopterygii) aus der mittleren Trias des Monte San Giorgio, Kanton Tessin. Schweizerische Paläontologische Abhandlungen, 108, 1–103.Google Scholar
  78. Rieppel, O. (1992). A new species of the genus Saurichthys (Pisces: Actinopterygii) from the Middle Triassic of Monte San Giorgio (Switzerland), with comments on the phylogenetic interrelationships of the genus. Palaentographica A, 221, 63–94.Google Scholar
  79. Rieppel, O. (1998). The Status of Sauropterygian Reptile Genera Ceresiosaurus, Lariosaurus and Silvestrosaurus from the Middle Triassic of Europe. Fieldiana: Geology, 38, 1–46.Google Scholar
  80. Rieppel, O. (2007). On the nothosaurian genera Ceresiosaurus and Lariosaurus. Geologia Insubrica, 10(2), 1–3.Google Scholar
  81. Röhl, H. J., Schmid-Röhl A., Furrer, H., Frimmel, A., Oschmann, W., & Schwark, L. (2001). Microfacies, geochemistry and palaeoecology of the Middle Triassic Grenzbitumenzone from Monte San Giorgio (Canton Ticino, Switzerland). Geologia Insubrica, 6(1), 1–13.Google Scholar
  82. Salaj, J., Borza, K., & Samuel, O. (1983). Triassic Foraminifers of the West Carpathians (213 pp). Bratislava: Geologicky Ustav Dioniza Stura.Google Scholar
  83. Sander, M. (1989). The Pachypleurosaurids (Reptilia: Nothosauria) from the Middle Triassic of Monte San Giorgio (Switzerland) with the description of a new species. Philosophical Transactions of the Royal Society of London B, 325, 561–670.CrossRefGoogle Scholar
  84. Schatz, W. (2001). Taxonomic significance of biometric characters and the consequences for classification and biostratigraphy, exemplified through moussoneliform daonellas (Daonella, Bivalvia; Triassic). Paläontologische Zeitschrift, 75, 51–70.Google Scholar
  85. Schatz, W. (2005a). Palaeoecology of the Triassic black shale bivalve Daonella—a new insight into an old controversy. Palaegeography, Palaeoclimatology, Palaeoecology, 216, 189–201.CrossRefGoogle Scholar
  86. Schatz, W. (2005b). Taxonomie, Paläoökologie und biostratigraphische Anwendung der Daonellen (Bivalvia, Mollusca) aus der Mitteltrias Europas. Schweizerische Paläontologische Abhandlungen, 125, 1–177.Google Scholar
  87. Scheuring, B. W. (1978). Mikrofloren aus den Meridekalken des Mte. San Giorgio (Kanton Tessin). Schweizerische Paläontologische Abhandlungen, 100, 1–205.Google Scholar
  88. Schultze, H.-P., & Möller, H. (1986). Wirbeltierreste aus dem Mittleren Muschelkalk (Trias) von Göttingen, West-Deutschland. Paläontologische Zeitschrift, 60, 109–129.Google Scholar
  89. Seilacher, A., Reif, W. E., & Westphal, F. (1985). Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philosophical Transactions of the Royal Society of London B, 311, 5–23.CrossRefGoogle Scholar
  90. Senn, A. (1924). Beiträge zur Geologie des Alpensüdrandes zwischen Mendrisio und Varese. Eclogae Geologicae Helvetiae, 18, 552–632.Google Scholar
  91. Sommaruga, A., Hochuli, P. A., & Mosar, J. (1997). The Middle Triassic (Anisian) conglomerates from Capo San Martino, South of Lugano-Paradiso (Southern Alps, Switzerland). Geologia Insubrica, 2(1), 1–14.Google Scholar
  92. Stockar, R. & Kustascher, E. (in press). The Ladinian flora from the Cassina beds (Meride Limestone, Monte San Giorgio, Switzerland): preliminary results. Rivista Italiana di Paleontologia e Stratigrafia.Google Scholar
  93. Tintori, A. (1992). Fish taphonomy and Triassic anoxic basins from the Alps: A case history. Rivista Italiana di Paleontologia e Stratigrafia, 97, 393–408.Google Scholar
  94. Tintori, A., & Lombardo, C. (2007). A new early Semionotidae (Semionotiformes, Actinopterygii) from the Upper Ladinian of Monte San Giorgio area (Southern Switzerland and Northern Italy). Rivista Italiana di Paleontologia e Stratigrafia, 113, 369–381.Google Scholar
  95. Tyson, R. V., & Pearson, T. H. (1991). Modern and ancient continental shelf anoxia: An overview. In R. V. Tyson & T. H. Pearson (Eds.), Modern and Ancient Continental Shelf Anoxia. Special publication 58 (pp. 1–24). London: Geological Society.Google Scholar
  96. Van der Eem, J. G. L. A. (1983). Aspects of Middle and Late Triassic Palynology. 6 Palynological investigations in the Ladinian and Lower Karnian of the Western Dolomites, Italy. Review of Palaeobotany and Palynology, 39, 189–300.CrossRefGoogle Scholar
  97. Whatley, R. C. (1992). The Platycopid signal: A means of detecting kenoxic events using ostracoda. Journal of Micropalaeontology, 10, 181–185.Google Scholar
  98. Wignall, P. B., & Hallam, A. (1991). Biofacies, stratigraphic distribution and depositonal models of British onshore Jurassic black shales. In R. V. Tyson & T. H. Pearson (Eds.), Modern and ancient continental shelf anoxia. Special publication 58 (pp. 291–309). London: Geological Society.Google Scholar
  99. Wild, R. (1980). Die Triasfauna der Tessiner Kalkalpen XXIV. Neue Funde von Tanystropheus (Reptilia, Squamata). Schweizerische Paläontologische Abhandlungen, 102, 1–43.Google Scholar
  100. Wilson, M. V. H. (1988). Taphonomic process: Information loss and information gain. Geoscience Canada, 15, 131–148.Google Scholar
  101. Wirz, A. (1945). Die Triasfauna der Tessiner Kalkalpen XV. Beiträge zur Kenntnis des Ladinikums im Gebiete des Monte San Giorgio. Schweizerische Paläontologische Abhandlungen, 65, 1–84.Google Scholar
  102. Wright, V. P. (1992). A revised classification of limestones. Sedimentary Geology, 76, 177–186.CrossRefGoogle Scholar
  103. Zorn, H. (1971). Paläontologische, stratigraphische und sedimentologische Untersuchungen des Salvatoredolomits (Mitteltrias) der Tessiner Kalkalpen. Schweizerische Paläontologische Abhandlungen, 91, 1–90.Google Scholar

Copyright information

© Swiss Geological Society 2010

Authors and Affiliations

  1. 1.Museo Cantonale di Storia NaturaleLuganoSwitzerland
  2. 2.Institut de Géologie et PaléontologieUniversité de LausanneLausanneSwitzerland

Personalised recommendations