Swiss Journal of Geosciences

, Volume 103, Issue 1, pp 3–13 | Cite as

A resin nodule in the Cretaceous Garschella Formation from Langer Köchel (Bavaria, S Germany): possible origin and palaeogeographic provenance

  • Hubert Engelbrecht
  • Karl B. Föllmi
  • Ursula Baumer
  • Johann Koller


A resin nodule was found in glauconite-rich detrital sediments of the Cretaceous Garschella Formation (Aptian to Albian) outcropping at Langer Köchel (Bavaria, S Germany). Gas chromatographic and mass spectrometric analyses of the fossil resin revealed dealkylation and the total defunctionalisation of its polycyclic constituents. Besides many unspecific components a specific one, agathalene, has survived. Agathalene also presents a strongly degraded product, but may have been derived from its natural precursor agathic acid, which is a very specific constituent (biomarker) of recent and fossil kauri resin. Although agathalene is a far less specific secondary biomarker, it indicates the botanic origin of the fossil resin nodule. Besides other potential producers of agathic acid, precursors of the present-day conifer species Agathis dammara and A. australis were distributed in a wider palaeophytogeographic range than today and might have been the botanical source of kauri resin. In view of the east–west directed Early Cretaceous surface current system of the Tethys ocean, the palaeogeographic provenance of the Werdenfels resin nodule probably was a mainland positioned further to the east or southeast of the Helvetic shelf, to where it was transported probably by driftwood of the resin-producing Agathis sp.


Resin nodule Amber Garschella formation Cretaceous Agathalene Palaeogeography 



The authors thank the blasting engineer Mr. P. Brandl, who presented the sample containing the fossil resin nodule during the temporary exposition “Industrie und Natur—Zur Geschichte des Hartsteinwerks Werdenfels im Murnauer Moos” (15 December 2000–25 February 2001, Schloßmuseum Murnau, Germany) and Dr. B. Salmen—directrice of that museum—who kindly made this sample available for scientific investigations. The Werdenfels resin nodule is now property of Schloßmuseum Murnau and is stored there in the geological section as item no. 9627 (Salmen 2008). We also thank Dr. M. P. Linder (University Lausanne) and Prof. G. O. Poinar Jr. (Oregon State University, Corvallis, USA), who gave important geological information. The referee Prof. U. Heimhofer (University of Bochum, Germany) and the associate editor Prof. H. Weissert (ETH Zürich, Switzerland) are greatly thanked for their critical comments and helpful advice. We thank Mr. F. Haiss (Cleveland, OH, USA) for improving the linguistic style of the paper.


  1. Alexander, R., Larcher, A. V., Kagi, R. I. & Price, P. L. (1992). An oil-source correlation study using age-specific plant-derived aromatic biomarkers. In J. M. Moldowan et al. (Eds.), Biological markers in sediments and petroleum (pp. 201–221). Prentice Hall: Eagle Wood Cliffs, New Jersey.Google Scholar
  2. Anderson, K. B. & Crelling, J. C. (Eds.). (1995). Amber, resinite and fossil resins (297 pp). Washington DC: American Chemical Society Symposium Series 617.Google Scholar
  3. Ascaso, C., Wierzchos, J., Speranza, M., Gutiérrez, J. C., González, A. M., de los Rios, A., et al. (2005). Fossil protists and fungi in amber and rock substrates. Micropaleontology, 51, 59–72.Google Scholar
  4. Balme, B. E. (1995). Fossil in situ spores and pollen grains: an annotated catalogue. Review of Palaeobotany and Palynology, 87, 81–323.CrossRefGoogle Scholar
  5. Batten, D. J., & Wenben, L. (1987). Aspects of palynomorph distribution, floral provinces and climate during the Cretaceous. Geologisches Jahrbuch A, 96, 219–237. Hannover.Google Scholar
  6. Beck, C. W., Stout, E. C. & Hanna, S. (1996). Amber of the European Alps. In International Union of Prehistoric an Protohistoric Sciences, Proceedings of the XIII Congress (pp. 497–506). Forli: A. B. A. C. O.Google Scholar
  7. Beck, C. W., Wilbur, E., Meret, S., Kossove, M., & Kermani, K. (1965). The infrared spectra of amber and the identification of Baltic amber. Archaeometry, 8, 96–109.CrossRefGoogle Scholar
  8. Bendoraitis, J. G. (1974). Hydrocarbons of biogenic origin in petroleum—aromatic triterpenes and bicyclic sesquiterpenes. In B. Tissot & F. Biener (Eds.), Advances in organic geochemistry (pp. 209–224).Google Scholar
  9. Beveridge, A. E. & Bergin, D. O. (2006). Agathis australis (D. Don) Lindl.- New Zealand Kauri: an overview of its history, ecology and management. In Proceedings of the International Araucariaceae Symposium, Auckland, New Zealand, March 14–17, 2002, paper no. 55Google Scholar
  10. Blakey, R. C. (2008). Global paleogeographic views of earth history. Late Precambrian to Recent.
  11. Bollinger, D. (1988). Die Entwicklung des distalen osthelvetischen Schelfs im Barremian und Früh-Aptian. Drusberg-, Mittagspitz- und Schrattenkalk-Fm. im Vorarlberg und Allgäu.- Unpublished Ph.D. thesis, Universität Zürich, 136 pp.Google Scholar
  12. Brenner, G. J. (1976). Middle Cretaceous floral provinces and early migration of Angiosperms. In C. B. Beck (Ed.), Origin and early evolution of angiosperms (pp. 23–47). New York: Columbia University Press.Google Scholar
  13. Christie-Blick, N. (1990). Sequence stratigraphy and sea-level changes in Cretaceous time. In R. N. Ginsburg & B. Beaudoin (Eds.), Cretaceous resources, events and rhythms (pp. 1–21). Netherlands: Kluwer.Google Scholar
  14. Coffin, M. F., & Eldholm, O. (1994). Large Igneous Provinces: crustal structure, dimensions and external consequences. Reviews of Geophysics, 32, 1–36.CrossRefGoogle Scholar
  15. Collin, G., & Zander, M. (1983). Aspekte moderner Steinkohlenteerchemie. Chemie in unserer Zeit, 17, 181–183.CrossRefGoogle Scholar
  16. Cruickshank, R. D., & Ko, K. (2003). Geology of an amber locality in the Hukawng Valley, northern Myanmar. Journal of Asian Earth Sciences, 21, 441–455.CrossRefGoogle Scholar
  17. De Laubenfels, D. J. (2006). New perspectives on the divisions of the Araucaria family. In Proceedings of the International Araucariaceae Symposium, Auckland, New Zealand, March 14–17, 2002, paper no. 1.Google Scholar
  18. Doben, K., Doppler, G., Freudenberger, W., Jerz, H., Meyer, R. K. F., Mielke, H., Ott, W.-D., Rohrmüller, J., Schmidt-Kahler, H., Schwerd, K. & Unger, H. J. (1996). Geologische Karte von Bayern 1:500.000, 4. Auflage. Ed. München: Bayerisches Geologisches Landesamt.Google Scholar
  19. Dulic, I. (2002). Middle Cretaceous palaeophytogeography of the Central Tethys and geodynamic implications. In: Wagreich, M. (Ed.), Aspects of Cretaceous stratigraphy and palaeobiogeography (pp. 79–91), Österreichische Akademie der Wissenschaften, Schriftenreihe der Erdwissenschaftlichen Kommission 15.Google Scholar
  20. Erba, E., & Tremolada, F. (2004). Nannofossil carbonate fluxes during the early Cretaceous: phytoplankton response to nutrification episodes, atmospheric CO2, and anoxia. Paleoceanography, 19, 1–18.CrossRefGoogle Scholar
  21. Farjon, A. & Waters, T. (2006). Biogeography of Agathis across its range. In Proceedings of the international araucariaceae symposium, Auckland, New Zealand, March 14–17, 2002, paper no. 49.Google Scholar
  22. Föllmi, K. B. (1989). Evolution of the Mid-Cretaceous Triad. Platform carbonates, phosphatic sediments, and pelagic carbonates along the Northern Tethys Margin. In S. Bhattacharji et al. (Eds.), lecture notes in earth sciences 23 (153 pp), Berlin, Heidelberg: Springer.Google Scholar
  23. Föllmi, K. B., Bodin, S., Godet, A., Linder, P., & van de Schootbrugge, B. (2007). Unlocking paleo-environmental information from Early Cretaceous shelf sediments in the Helvetic Alps: stratigraphy is the key!. Swiss Journal of Geosciences, 100, 349–369.CrossRefGoogle Scholar
  24. Föllmi, K. B., & Gainon, F. (2008). Demise of the northern Tethyan Urgonian carbonate platform and subsequent transition towards pelagic conditions: the sedimentary record of the Col de la Plaine Morte area, central Switzerland. Sedimentary Geology, 205, 142–159.CrossRefGoogle Scholar
  25. Forster, A., Schouten, S., Baas, M., & Damsté, J. (2007). Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology, 35, 919–922.CrossRefGoogle Scholar
  26. Gallegos, E. J. (1984). Fine structure in the m/z 121 mass chromatogram of Paraho Shale Oil. Analytical Chemistry, 56, 701–708.CrossRefGoogle Scholar
  27. Gianolla, P., Ragazzi, E., & Roghi, G. (1998). Upper Triassic amber from the Dolomites (Northern Italy). A paleoclimatic indicator? Rivista Italiana di Paleontologia e Stratigrafia, 104(3), 381–390.Google Scholar
  28. Glaser, S., Lagally, U., Loth, G., Schmid, H. & Schwerd, K. (2008). Geotope in Oberbayern. Erdwissenschaftliche Beiträge zum Naturschutz 6 (192 pp), Bayerisches Landesamt für Umwelt, Augsburg.Google Scholar
  29. Heimhofer, U., Hochuli, P. A., Burla, S., Dinis, J. M. L., & Weissert, H. (2005). Timing of early Cretaceous angiosperm diversification and possible links to major paleoenvironmental change. Geology, 33, 141–144.CrossRefGoogle Scholar
  30. Hiltmann, W., Kuckelkorn, K., & Wehner, H. (1995). Thermische Entwicklung und KW-Bildungspotential der in der Bohrung Hindelang 1 (Allgäuer Alpen) durchteuften tektonischen Einheiten. Geologica Bavarica, 100, 175–197. München.Google Scholar
  31. Hochuli, P. A. (1981). North Gondwanan floral elements in Lower to Middle Cretaceous sediments of the Southern Alps (Southern Switzerland, Northern Italy). Review of Palaeobotany and Palynology, 35, 337–358.CrossRefGoogle Scholar
  32. Huber, K., & Schwerd, K. (1995). Das geologische Profil der Tiefbohrung Hindelang 1 (Allgäuer Alpen). Geologica Bavarica, 100, 23–54. München: Bayerisches Geologisches Landesamt.Google Scholar
  33. Koller, J., Baumer, B. & Baumer, U. (1997). Die Untersuchung von Bernstein, Bernsteinölen und Bernsteinlacken. In M. Ganzelewski et al. (Eds.), Sonderheft Metalla (pp. 85–102), Bochum: Neue Erkenntnisse zu Bernstein.Google Scholar
  34. Langenheim, J. H. (1995). Biology of amber-producing trees: Focus on case studies of Hymenaea and Agathis. In K. B. Anderson & J. C. Crelling (Eds.), Amber, resinite and fossil resins (pp. 1–31). Washington DC: ACS Symposium Series 617.Google Scholar
  35. Larson, R. L., & Erba, E. (1999). Onset of the mid-Cretaceous greenhouse in the Barremian-Aptian: Igneous events and the biological, sedimentary and geochemical responses. Paleoceanography, 146, 663–678.CrossRefGoogle Scholar
  36. Linder, P., Gigandet, J., Hüsser, J. L., Gainon, F., & Föllmi, K. B. (2006). The early Aptian Grünten Member. Eclogae geologicae Helvetiae, 99, 327–341.CrossRefGoogle Scholar
  37. Müller, M. (1985). Maderhalm 1 und Kierwang 1 - Zwei Tiefbohrungen in das Helvetikum des bayerischen Allgäus. Jahrbuch der Geologischen Bundesanstalt, 127, 639–641.Google Scholar
  38. Murray, A. P., Padley, D., McKirdy, D. M., Booth, W. E., & Summons, R. E. (1994). Oceanic transport of fossil dammar resin: The chemistry of coastal resinites from south Australia. Geochimica et Cosmochimica Acta, 58, 3049–3059.CrossRefGoogle Scholar
  39. Noller, C. R. (1960). Lehrbuch der Organischen Chemie, Heidelberg, 908 pp.Google Scholar
  40. Oelert, H.-H., & Lenart, L. (1975). Zur Chemie von Erdöl und Kohle. Chemie in unserer Zeit, 9, 183–190.CrossRefGoogle Scholar
  41. Ogg, J. G., Agterberg, F. P., & Gradstein, F. M. (2004). The cretaceous period. In F. M. Gradstein, J. G. Ogg, & A. G. Smith (Eds.), A geological time scale 2004 (pp. 344–383). Cambridge, UK: Cambridge University Press.Google Scholar
  42. Pantic, N. K., & Burger, H. (1981). Palynologische Untersuchungen in der untersten Kreide des östlichen Helvetikums. Eclogae geologicae Helvetiae, 74(3), 661–672.Google Scholar
  43. Philippe, M., Barbacka, M., Gradinaru, E., Iamandei, E., Iamandei, S., Kázmér, et al. (2006). Fossil wood and Mid-Eastern Europa terrestrial palaeobiogeography during the Jurassic-Early Cretaceous interval. Review of Palaeobotany and Palynology, 142, 15–32.CrossRefGoogle Scholar
  44. Poinar, G., Lambert, J. B., & Wu, Y. (2004). NMR analysis of amber in the Zubair Formation, Khafji Oilfield (Saudi Arabia - Kuwait): Coal as an oil source rock? Journal of Petroleum Geology, 27(2), 207–209.CrossRefGoogle Scholar
  45. Poinar, G. O. & Poinar, R. (2003). Agathis amber: a Cretaceous insect trap. Geological Society of America, Abstracts with Programs, 35, p. 537.Google Scholar
  46. Pucéat, E., Lécuyer, C., & Reisberg, L. (2005). Neodymium isotope evolution of NW Tethyan upper ocean waters throughout the Cretaceous. Earth and Planetary Science Letters, 236, 705–720.CrossRefGoogle Scholar
  47. Rasnitsyn, A. P., & Quicke, D. L. J. (2002). History of insects (517 pp). Dordrecht, Boston, London: Kluwer Academic Publishers.CrossRefGoogle Scholar
  48. Richardson, J. S., & Miller, D. E. (1987). Identification of dicyclic and tricyclic hydrocarbons in the saturated fraction of a crude oil by gas chromatography/mass spectrometry. Analytical Chemistry, 54, 765–768.CrossRefGoogle Scholar
  49. Roeder, D. (2009). American and Tethyan fold-thrust belts. In Bender, F. et al. (Eds.), Beiträge zur regionalen Geologie der Erde 31. Berlin: Gebrüder Borntraeger.Google Scholar
  50. Roghi, G., Ragazzi, E., & Gianolla, P. (2006). Triassic amber of the Southern Alps (Italy). Palaios, 21, 143–154.CrossRefGoogle Scholar
  51. Rullkötter, J. (1984). Molekulare Fossilien. Nachrichten aus Chemie, Technik und Laboratorium, 32, 418–423.Google Scholar
  52. Ruzicka, L., & Hosking, J. R. (1930). Higher terpenoid compounds XLII: dehydrogenation and isomerisation of agathic acid. Helvetica Chimica Acta, 13, 1402–1423.CrossRefGoogle Scholar
  53. Salmen, B. (2008). Museumsschätze. 15 Jahre Schloßmuseum Murnau. Schloßmuseum des Marktes Murnau, 47 pp.Google Scholar
  54. Savkevich, S. S., Skalsky, A. W., & Veggiani, A. (1990). Fossil resin in deep deposits of the Persian Gulf. Prace Muzeum Ziemi, 41, 50–51.Google Scholar
  55. Schmidt, A. (2003). Das fossile Harz von Schliersee (Bayerische Alpen) und seine Mikroinklusen. Unpublished PhD Thesis, Friedrich-Schiller-Universität, Jena, 110 pp.Google Scholar
  56. Scotese, C. R. (2000). Paleomap project. Climate history.
  57. Steuber, T., Rauch, M., Masse, J.-P., Graaf, J., & Malkoc, M. (2005). Low-latitude seasonality of Cretaceous temperatures in warm and cold episodes. Nature, 437, 1341–1344.CrossRefGoogle Scholar
  58. Strachan, M. G., Alexander, R., & Kagi, R. J. (1988). Trimethylnaphthalene in crude oils and sediments: effects of source and maturity. Geochimica et Cosmochimica Acta, 52, 1255–1264.CrossRefGoogle Scholar
  59. Teichmüller, M. & Teichmüller, R. (1978). Coalifications studies in the Alps. In Closs, H., Roeder, D., Schmidt, K. (Eds.), Alps, Apennines, Hellenides. Geodynamic investigations along geotraverses by an international group of geoscientists (pp. 49–55). Stuttgart: Schweizerbart.Google Scholar
  60. Thomas, B. R. (1969). Kauri resins—modern and fossil. In G. Eglinton & M. T. J. Murphy (Eds.), Organic geochemistry (pp. 599–618), Heidelberg.Google Scholar
  61. Van den Burgh, J. (2006). Araucariaceae: development and decline. In Proceedings of the international Araucariaceae symposium, Auckland, New Zealand, March 14–17, 2002, paper no. 5.Google Scholar
  62. Vandenberg, J. T., Anderson, D. G., Duffer, J. K., Julian, J. M. Scott, R.W., Sutlitt, T. M. & Vaichus, M. J. (1980). An infrared spectroscopy atlas for the coatings industry. Philadelphia, USA: Federation of Societies for Coating Technology, 896 pp.Google Scholar
  63. Vavra, N. (1996). Fossile Harze aus dem alpinen Mesozoikum. In M. Ganzelewski & R. Slotta (Eds.). Bernstein—Tränen der Götter, Bochum, pp. 351–356.Google Scholar
  64. Voronova, M. A. (1989). Floristic and paleoclimatic changes in the southern part of the East European Platform in early Cretaceous times. In E. Knobloch & Z. Kvacek (Eds.), Proceedings of the symposium Paleofloristic and Paleoclimatic changes in the Cretaceous and Tertiary, International Geological Correlation Programme, Project No. 216, Global Biological Events in Earth History (pp. 39–45), Geological Survey Publisher, Prague 1990.Google Scholar
  65. Wilde, V., & Goth, K. (1987). Keimlinge von Araukarien aus der Unterkreide von Brilon-Nehden. Geologie und Paläontologie in Westfalen, 10, 45–50.Google Scholar
  66. Wortmann, U. G., Herle, J. O., & Weissert, H. (2004). Altered carbon cycling in Early Cretaceous weathering patterns. Earth and Planetary Science Letters, 220, 69–82.CrossRefGoogle Scholar
  67. Wyssling, G. (1986). Der frühkretazische helvetische Schelf im Vorarlberg und im Allgäu- Stratigraphie, Sedimentologie und Paläogeographie (pp. 161–265). Jahrbuch der Geologischen Bundes-Anstalt 129, Wien.Google Scholar
  68. Yessalina, S., Suzuki, N., Nishita, H., & Waseda, A. (2006). Higher plant biomarkers in Paleogene crude oils from the Yufutsu oil- and gasfield and offshore wildcats, Japan. Journal of Petroleum Geology, 29(4), 327–336.CrossRefGoogle Scholar
  69. Zeil, W. (1954). Geologie der Alpenrandzone bei Murnau in Oberbayern. Geologica Bavarica 20, Bayerisches Geologisches Landesamt, München, 85 pp.Google Scholar
  70. Zherikhin, V. V., & Eskov, K. Yu. (1999). Mesozoic and lower Tertiary resins in former USSR. Estudios del Museo de Ciencias Naturales de Alava, 14, 119–131.Google Scholar

Copyright information

© Swiss Geological Society 2010

Authors and Affiliations

  • Hubert Engelbrecht
    • 1
  • Karl B. Föllmi
    • 2
  • Ursula Baumer
    • 3
  • Johann Koller
    • 3
  1. 1.MunichGermany
  2. 2.Institut de Geólogie et PaléontologieUniversité de LausanneLausanneSwitzerland
  3. 3.Doerner InstitutMunichGermany

Personalised recommendations