Advertisement

Modules for map Virasoro conformal algebras

  • Henan WuEmail author
Article
  • 6 Downloads

Abstract

Any nontrivial finite irreducible module for the map Lie conformal algebra \(\hbox {Vir}\bigotimes {\mathcal {A}}\), where \(\hbox {Vir}\) is the Virasoro conformal algebra and \({\mathcal {A}}\) is an arbitrary finitely generated commutative associative algebra with unity over \({\mathbb {C}}\), is proved to be an evaluation module.

Keywords

Map Virasoro conformal algebra Finite irreducible module Evaluation module 

Mathematics Subject Classification

17B10 17B65 17B68 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Atiyah, M., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley, Boston (1969)zbMATHGoogle Scholar
  2. 2.
    Bakalov, B., Kac, V.G., Voronov, A.: Cohomology of conformal algebras. Commun. Math. Phys. 200, 561–598 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cheng, S.-J., Kac, V.G.: Conformal modules. Asian J. Math. 1(1), 181–193 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    D’Andrea, A., Kac, V.G.: Structure theory of finite conformal algebras. Sel. Math., New Ser. 4, 377–418 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fattori, D., Kac, V.G.: Classification of finite simple Lie conformal superalgebras. J. Algebra 258(1), 23–59 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kac, V.G.: Vertex Algebras for Beginners. University Lecture Series 10, 2nd edn. AMS, Providence (1998)Google Scholar
  7. 7.
    Kac, V.G.: The idea of locality. In: Doebner, H.-D., et al. (eds.) Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras, pp. 16–32. World Scientific Publishing, Singapore (1997)Google Scholar
  8. 8.
    Savage, A.: Classification of irreducible quasifinite modules over map Virasoro algebras. Transform. Groups 17(2), 547–570 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wu, H.: Finite irreducible representations of map Lie conformal algebras. Int. J. Math. 28(1), 1750002 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wu, H., Yuan, L.: Classification of finite irreducible conformal modules over some Lie conformal algebras related to the Virasoro conformal algebra. J. Math. Phys. 58, 041701 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesShanxi UniversityTaiyuanChina

Personalised recommendations