Advertisement

Archiv der Mathematik

, Volume 112, Issue 6, pp 581–586 | Cite as

The sums of exceptional units in a finite ring

  • David DolžanEmail author
Article
  • 33 Downloads

Abstract

We prove a formula for the number of representations of an element in a finite basic ring as a sum of k exceptional units and find bounds for this number in an arbitrary finite ring with identity.

Keywords

Exceptional unit Finite ring Matrix ring 

Mathematics Subject Classification

11T24 16U60 11B13 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Houriet, J.: Exceptional units and Euclidean number fields. Arch. Math. 88, 425–433 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Lenstra, H.W.: Euclidean number fields of large degree. Invent. Math. 38(3), 237–254 (1976/1977)Google Scholar
  3. 3.
    Leutbecher, A., Niklasch, G.: On cliques of exceptional units and Lenstras construction of Euclidean fields. In: Schlickewei, H.P., Wirsing, E. (eds.) Number Theory, Proc. Jour. Arith., Ulm, 1987. Lecture Notes in Mathematics, vol. 1380, pp. 150–178. Springer, New York (1989)Google Scholar
  4. 4.
    Miguel, C.: On the sumsets of exceptional units in a finite commutative ring. Monatsh. Math. 186, 315–320 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Nagell, T.: Sur un type particulier d’unités algébriques. Ark. Mat. 8, 163–184 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Silverman, J.H.: Exceptional units and numbers of small Mahler measure. Exp. Math. 4, 69–83 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Silverman, J.H.: Small Salem numbers, exceptional units, and Lehmers conjecture. In: Symposium on Diophantine Problems, Boulder, CO, 1994, Rocky Mountain J. Math. 26 (3) 1099–1114 (1996)Google Scholar
  8. 8.
    Smart, N.P.: Solving discriminant form equations via unit equations. J. Symb. Comput. 21, 367–374 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Stewart, C.L.: Exceptional units and cyclic resultants. Acta Arith. 155(4), 407–418 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Stewart, C.L.: Exceptional units and cyclic resultants, II. In: Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms, Contemporary Mathematics, vol. 587. Amer. Math. Soc., Providence, RI, pp. 191–200 (2013)Google Scholar
  11. 11.
    Tzanakis, N., deWeger, B.M.M.: On the practical solution of the Thue equation. J. Number Theory 31, 99–132 (1989)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tzanakis, N., deWeger, B.M.M.: How to explicitly solve a Thue–Mahler equation. Compos. Math. 84, 223–288 (1992)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Yang, Q.H., Zhao, Q.-Q.: On the sumsets of exceptional units in \({{\mathbb{Z}}}_n\). Monatsh. Math. 182(2), 489–493 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations