Abstract
We discuss Beauville groups whose corresponding Beauville surfaces are either always strongly real or never strongly real producing several infinite families of examples.
Keywords
Beauville surface Strongly real surface Beauville groupMathematics Subject Classification
Primary 20D06 Secondary 14J29 30F10Preview
Unable to display preview. Download preview PDF.
Notes
References
- 1.Barker, N.W., Bosten, N., Fairbairn, B.T.: A note on Beauville \(p\)-groups. Exp. Math. 21(3), 298–306 (2012)MathSciNetCrossRefGoogle Scholar
- 2.Bauer, I., Catanese, F., Grunewald, F.: Beauville surfaces without real structures. In: Bogomolov, F., Tschinkel, Y. (eds.) Geometric Methods in Algebra and Number Theory, Progress in Mathematics, vol. 235, pp. 1–42. Birkhäuser, Boston (2005)CrossRefGoogle Scholar
- 3.Catanese, F.: Fibered surfaces, varieties isogenous to a product and related moduli spaces. Am. J. Math. 122(1), 1–44 (2000)MathSciNetCrossRefGoogle Scholar
- 4.Fairbairn, B.T.: Some exceptional Beauville structures. J. Group Theory 15(5), 631–639 (2012)MathSciNetCrossRefGoogle Scholar
- 5.Fairbairn, B.T.: Strongly real Beauville groups. In: Bauer, I., Garion, S., Vdovina, A. (eds.) Beauville Surfaces and Groups, Springer Proceedings in Mathematics and Statistics, vol. 123, pp. 41–61. Springer, Berlin (2015)Google Scholar
- 6.Fairbairn, B.T.: More on strongly real Beauville groups. In: Širáň, J., Jajcay, R. (eds.) Symmetries in Graphs Maps and Polytopes 5th SIGMAP Workshop, West Malvern, UK, July 2014. Springer Proceedings in Mathematics and Statistics, vol. 159, pp. 129–146 (2016)Google Scholar
- 7.Fairbairn, B.T.: A new infinite family of non-abelian strongly real Beauville \(p\)-groups for every odd prime \(p\). Bull. Lond. Math. Soc. 49(4) (2017)Google Scholar
- 8.Fernández-Alcober, G.A., Gül, Ş.: Beauville structures in finite \(p\)-groups. J. Algebra 474, 1–23 (2017)MathSciNetCrossRefGoogle Scholar
- 9.Fuertes, Y., González-Diez, G.: On Beauville structures on the groups \(S_n\) and \(A_n\). Math. Z. 264(4), 959–968 (2010)MathSciNetCrossRefGoogle Scholar
- 10.Fuertes, Y., Jones, G.: Beauville surfaces and finite groups. J. Algebra 340, 13–27 (2011)MathSciNetCrossRefGoogle Scholar
- 11.Gül, Ş.: A note on strongly real Beauville \(p\)-groups. Preprint arXiv:1607.08907
- 12.Gül, Ş.: An infinite family of strongly real Beauville \(p\)-groups. Monatsh. Math. 185(4), 663–675 (2018)MathSciNetCrossRefGoogle Scholar
- 13.Helleloid, G.T., Martin, U.: The automorphism group of a finite \(p\)-group is almost always a \(p\)-group. J. Algebra 312, 284–329 (2007)MathSciNetCrossRefGoogle Scholar
- 14.MacBeath, A. M.: Generators of the linear fractional groups. In: Number Theory (Proceedings of Symposia in Pure Mathematics, Vol. XII, Houston, Texas, 1967), pp. 14–32. American Mathematical Society, Providence (1969)Google Scholar
- 15.Stix, J., Vdovina, A.: Series of \(p\)-groups with Beauville structure. Monatsh. Math. 181(1), 177–186 (2016)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019