Advertisement

The Cheeger constant of curved tubes

  • David KrejčiříkEmail author
  • Gian Paolo Leonardi
  • Petr Vlachopulos
Article
  • 31 Downloads

Abstract

We compute the Cheeger constant of tubular neighbourhoods of complete curves in an arbitrary dimensional Euclidean space and raise a question about curved spherical shells.

Keywords

Cheeger constant Cheeger set Curved tubes Tubular neighbourhoods of curves Spherical shells 

Mathematics Subject Classification

28A75 35P15 49Q10 49Q15 49Q20 51M16 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are grateful to Vladimir Bobkov for pointing out to us the references [4,5]. The research of D.K. was partially supported by the GACR Grant No. 18-08835S and by FCT (Portugal) through project PTDC/MATCAL/4334/2014.

References

  1. 1.
    Anoop, T.V., Bobkov, V., Sasi, S.: On the strict monotonicity of the first eigenvalue of the \(p\)-Laplacian on annuli. Trans. Am. Math. Soc. 370, 7181–7199 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in \(\mathbb{R}^N\). J. Differ. Equ. 184, 475–525 (2002)CrossRefGoogle Scholar
  3. 3.
    Bishop, R.L.: There is more than one way to frame a curve. Am. Math. Monthly 82, 246–251 (1975)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bueno, H., Ercole, G.: Solutions of the Cheeger problem via torsion functions. J. Math. Anal. Appl. 381, 263–279 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Demengel, F.: Functions locally almost 1-harmonic. Appl. Anal. 83, 865–896 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gray, A.: Tubes. Addison-Wesley, New York (1990)zbMATHGoogle Scholar
  7. 7.
    Grieser, D.: The first eigenvalue of the Laplacian, isoperimetric constants, and the Max Flow Min Cut Theorem. Arch. Math. 87, 75–85 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kawohl, B.: Two dimensions are easier. Arch. Math. 107, 423–428 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kawohl, B., Fridman, V.: Isoperimetric estimates for the first eigenvalue of the \(p\)-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carol. 44, 659–667 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kawohl, B., Lachand-Robert, T.: Characterization of Cheeger sets for convex subsets of the plane. Pac. J. Math. 225, 103–118 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kawohl, B., Schuricht, F.: First eigenfunctions of the \(1\)-Laplacian are viscosity solutions. Commun. Pure Appl. Anal. 14, 329–339 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Krejčiřík, D., Pratelli, A.: The Cheeger constant of curved strips. Pac. J. Math. 254, 309–333 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Leonardi, G.P.: An Overview on the Cheeger Problem. New Trends in Shape Optimization. International Series of Numerical Mathematics, vol. 166, pp. 117–139. Springer, New York (2015)CrossRefGoogle Scholar
  14. 14.
    Leonardi, G.P., Pratelli, A.: On the Cheeger sets in strips and non-convex domains. Calc. Var. Partial Differ. Equ. 55(15), 1–28 (2016)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Leonardi, G.P., Neumayer, R., Saracco, G.: The Cheeger constant of a Jordan domain without necks. Calc. Var. Partial Differ. Equ. 56(164), 1–29 (2017)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Leonardi, G.P., Saracco, G.: Two examples of minimal Cheeger sets in the plane. Ann. Mat. Pura Appl. 197(5), 1511–1531 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  18. 18.
    Parini, E.: An introduction to the Cheeger problem. Surv. Math. Appl. 6, 9–22 (2011)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David Krejčiřík
    • 1
    Email author
  • Gian Paolo Leonardi
    • 2
  • Petr Vlachopulos
    • 1
  1. 1.Department of Mathematics, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePrague 2Czechia
  2. 2.Department of MathematicsUniversity of TrentoPovo - TrentoItaly

Personalised recommendations