Archiv der Mathematik

, Volume 112, Issue 5, pp 489–495 | Cite as

On curves on rational surface scrolls

  • Gerriet MartensEmail author


For a smooth curve C in \({{\mathbb {P}}}^{r_0}\) lying on a rational surface scroll, we try to identify those complete and base point free linear series of small degree which are not obtainable just by projection from C.


Linear systems Gonality Rational scrolls 

Mathematics Subject Classification

14H45 Secondary 14H51 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves. I. Springer, Berlin (1985)CrossRefzbMATHGoogle Scholar
  2. 2.
    Coppens, M., Keem, C., Martens, G.: Primitive linear series on curves. Manuscripta Math. 77, 237–264 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ciliberto, C., Lazarsfeld, R.: On the uniqueness of certain linear series on some classes of curves. Lect. Notes Math. 1092, 198–213 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, Berlin (1977)CrossRefGoogle Scholar
  5. 5.
    Lange, H., Martens, G.: On the gonality sequence of an algebraic curve. Manuscripta Math. 137, 457–473 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Martens, G.: The gonality of curves on a Hirzebruch surface. Arch. Math. 67, 349–352 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Reider, I.: Some applications of Bogomolov’s theorem. In: Catanese, F. (ed.) Problems in the Theory of Surfaces and their Classification, Symposia Mathematica, vol. 32, pp. 376–410. Academic Press, Cambridge (1991)Google Scholar
  8. 8.
    Schreyer, F.-O.: Syzygies of curves with special pencils. Brandeis Univ., Thesis (1983)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department MathematikUniv. Erlangen-NürnbergErlangenGermany

Personalised recommendations