On shifted primes with large prime factors and their products



In this short note, we give partial answers to two questions on shifted primes with large prime factors, posed by Luca et al. (Bull Belg Math Soc Simon Stevin 22:39–47, 2015) and by Chen and Chen (Acta Math Sin (Engl Ser) 33(3):377–382, 2017), respectively.


Shifted prime Brun–Titchmarsh inequality 

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported in part by Scientific Research Innovation Team Project Affiliated to Yangtze Normal University (No. 2016XJD01).


  1. 1.
    Baker, R.C., Harman, G.: The Brun–Titchmarsh theorem on average. In: Proceedings Conference in Honor of Heini Halberstam (Allerton Park, IL, 1995), Progress in Mathematics, vol. 138, pp. 39–103. Birkhäuser, Boston (1996)Google Scholar
  2. 2.
    Banks, W., Shparlinski, Igor E.: On values taken by the largest prime factor of shifted primes. J. Aust. Math. Soc. 82, 133–147 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Billerey, N., Menares, R.: On the modularity of reducible mod \(\ell \) Galois representations. Math. Res. Lett. 23(1), 15–41 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, F.-J., Chen, Y.-G.: On the largest prime factor of shifted primes. Acta Math. Sin. (Engl. Ser.) 33(3), 377–382 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Feng, B., Wu, J.: On the density of shifted primes with large prime factors. Sci. China Math. 12(1), 83–94 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fouvry, É.: Théorème de Brun–Titichmarsh; application au théorème de Fermat. Invent. Math. 79, 383–407 (1985)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Granville, A.: Smooth numbers: computational number theory and beyond. In: Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, vol. 44, pp. 267–323. Cambridge University Press, Cambridge (2008)Google Scholar
  8. 8.
    Liu, J.-Y., Wu, J., Xi, P.: Primes in arithmetic progressions with friable indices. Preprint (2017)Google Scholar
  9. 9.
    Luca, F., Menares, R., Pizarro-Madariaga, A.: On shifted primes with large prime factors and their products. Bull. Belg. Math. Soc. Simon Stevin 22, 39–47 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Mikawa, H.: On primes in arithmetic progressions. Tsukuba J. Math. 25, 121–153 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Montgomery, H.L., Vaughan, R.C.: The large sieve. Mathematika 20, 119–134 (1973)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pomerance, C.: Popular values of Euler’s function. Mathematika 27, 84–89 (1980)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, Z.-W.: Autour des plus grands facteurs premiers d’entiers consécutifs voisins d’un entier criblé. Q. J. Math. 69(3), 995–1013 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhang, Y.: Bounded gaps between primes. Ann. Math. (2) 179, 1121–1174 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsYangtze Normal UniversityFulingChina
  2. 2.CNRS LAMA 8050, Laboratoire d’Analyse et de Mathématiques AppliquéesUniversité Paris-Est CréteilCréteil CedexFrance

Personalised recommendations