Archiv der Mathematik

, Volume 112, Issue 1, pp 71–82 | Cite as

Convolution operators in discrete Cesàro spaces

  • Werner J. RickerEmail author


The discrete Cesàro spaces \({{\text {ces(p )}}}, 1< p < \infty ,\) are well known and arise from the classical sequence spaces \(\ell ^p,1<p<\infty \), via the process of averaging. It is known that a sequence \(b\in {\mathbb {C}}^{\mathbb {N}}\) convolves \({{\text {ces(p )}}}\) into itself if and only if \(b\in \ell ^1\), which is a very different situation than for convolution in the spaces \(\ell ^p\). The purpose of this note is to determine the spectrum of the convolution operator \(a \mapsto b*a\), for \(a\in {{\text {ces(p )}}}\), whenever \(b\in \ell ^1\). It is then possible to describe the mean ergodic properties of such a convolution operator.


Convolution operator Spectrum Discrete Cesàro space Banach algebra Mean ergodicity 

Mathematics Subject Classification

Primary 42A85 43A22 47A10 47B37 Secondary 47A35 47C05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Thanks go to the referee for some useful comments and suggestions.


  1. 1.
    Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. 120(576), 1–130 (1996)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bourdon, P.S., Feldman, N.S., Shapiro, J.H.: Some properties of \(N\)-supercyclic operators. Studia Math. 165, 135–157 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Conway, J.B.: A Course in Functional Analysis. Springer, New York (1985)CrossRefzbMATHGoogle Scholar
  4. 4.
    Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on \(\ell ^p\) and \(c_0\). Integral Equ. Oper. Theory 80, 61–77 (2014)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dunford, N., Schwartz, J.T.: Linear Operators I. General Theory. Wiley Interscience Publ Inc, New York (1964)zbMATHGoogle Scholar
  6. 6.
    Grosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos. Springer, London (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)zbMATHGoogle Scholar
  8. 8.
    Jagers, A.A.: A note on Cesàro sequence spaces. Nieuw Arch. Voor Wiskunde 3(22), 113–124 (1974)zbMATHGoogle Scholar
  9. 9.
    Köthe, G.: Topological Vector Spaces I. Springer, Berlin (1983)CrossRefGoogle Scholar
  10. 10.
    Lorch, E.R.: Means of iterated transformations in reflexive vector spaces. Bull. Am. Math. Soc. 45, 945–947 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Marden, M.: Geometry of Polynomials. Mathematical Surveys, vol. 3. American Mathematical Society, Providence (1966)zbMATHGoogle Scholar
  12. 12.
    Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)zbMATHGoogle Scholar
  13. 13.
    Naĭmark, M.A.: Normed Algebras, 3rd edn. Wolters-Noordhoff Publishing, Groningen (1972)Google Scholar
  14. 14.
    Nikol’skiĭ, N.K.: On spaces and algebras of Toeplitz matrices operating in \(\ell ^{p}\). Siber. Math. J. 7, 118–126 (1966)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Schur, I.: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. J. Reine Angew. Math. 147, 205–232 (1917)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Wiener, N.: Tauberian theorems. Ann. Math. 33, 1–100 (1932)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zygmund, A.: Trigonometric Series, vol. I. Cambridge University Press, Cambridge (1968)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Math.-Geogr. FakultätKatholische Univ. Eichstätt-IngolstadtEichstättGermany

Personalised recommendations