Advertisement

Archiv der Mathematik

, Volume 112, Issue 1, pp 61–69 | Cite as

A relative completeness theorem

  • Viorel VâjâituEmail author
Article
  • 28 Downloads

Abstract

We prove a relative n-completeness theorem asserting that a complex space Y that fibers over a complex space X of dimension less than n is n-complete provided that Y admits a continuous exhaustion function that is strictly plurisubharmonic along fibers. We apply it to a particular case related to Skoda’s conjecture.

Keywords

q-Convex function Plurisubharmonic function Skoda’s conjecture 

Mathematics Subject Classification

32F10 32U05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreotti, A., Grauert, H.: Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France 90, 193–259 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Demailly, J.-P.: Cohomology of \(q\)-convex spaces in top degrees. Math. Z. 204, 283–295 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Grauert, H.: Une notion de dimension cohomologique dans la théorie des espaces complexes. Bull. Soc. Math. France 87, 341–350 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Miyazawa, K.: On the \(n\)-completeness of coverings of proper families of analytic spaces. Osaka J. Math. 39, 59–88 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ohsawa, T.: Completeness of noncompact analytic spaces. Publ. Res. Inst. Math. Sci. 20, 683–692 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Peternell, M.: Algebraische Varietäten und \(q\)-vollständige komplexe Räume. Math. Z. 200, 547–581 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Richberg, R.: Stetige streng pseudokonvexe Funktionen. Math. Ann. 175, 257–286 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Vâjâitu, V.: Some convexity properties of morphisms of complex spaces. Math. Z. 217, 215–245 (1994)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratoire Paul PainlevéUniversité des Sciences et Technologies de Lille 1Villeneuve d’Ascq CedexFrance

Personalised recommendations