Advertisement

Archiv der Mathematik

, Volume 112, Issue 1, pp 19–25 | Cite as

Dade’s ordinary conjecture implies the Alperin–McKay conjecture

  • Radha KessarEmail author
  • Markus Linckelmann
Open Access
Article

Abstract

We show that Dade’s ordinary conjecture implies the Alperin–McKay conjecture. We remark that some of the methods can be used to identify a canonical height zero character in a nilpotent block.

Keywords

Dade’s ordinary conjecture Alperin–McKay conjecture Height zero characters 

Mathematics Subject Classification

20C20 

Notes

Acknowledgements

We thank Gunter Malle for helpful comments on the first version of the paper.

References

  1. 1.
    Broué, M., Puig, L.: Characters and local structure in \(G\)-algebras. J. Algebra 63, 306–317 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dade, E.C.: A correspondence of characters, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), In: Proceedings of Symposia in Pure Mathematics, vol. 37, pp. 401–403. American Mathematical Society, Providence (1980)Google Scholar
  3. 3.
    Dade, E.C.: Counting characters in blocks, I. Invent. Math. 109, 187–210 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dade, E.C.: Counting characters in blocks, II. J. Reine Angew. Math. 448, 97–190 (1994)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Diaz, A., Glesser, A., Mazza, N., Park, S.: Control of transfer and weak closure in fusion systems. J. Algebra 323, 382–392 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Linckelmann, M.: Alperin’s weight conjecture in terms of equivariant Bredon cohomology. Math. Z. 250, 495–513 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Linckelmann, M.: The orbit space of a fusion system is contractible. Proc. Lond. Math. Soc. 98, 191–216 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Linckelmann, M.: On automorphisms and focal subgroups of blocks. Preprint (2016). arXiv:1612.07739
  9. 9.
    Murai, M.: Block induction, normal subgroups and characters of height zero. Osaka J. Math. 31, 9–25 (1994)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Murai, M.: On a minimal counterexample to the Alperin–McKay conjecture. Proc. Japan Acad. 87, 192–193 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Navarro, G.: Character theory and the McKay conjecture. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2018). https://doi.org/10.1017/9781108552790Google Scholar
  12. 12.
    Okuyama, T., Wajima, M.: Character correspondence and \(p\)-blocks of \(p\)-solvable groups. Osaka J. Math. 17, 801–806 (1980)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Picaronny, C., Puig, L.: Quelques remarques sur un thème de Knörr. J. Algebra 109, 69–73 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Puig, L.: Nilpotent blocks and their source algebras. Invent. Math. 93, 77–116 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Robinson, G.R.: Weight conjectures for ordinary characters. J. Algebra 276, 761–775 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Robinson, G.R.: On the focal defect group of a block, characters of height zero, and lower defect group multiplicities. J. Algebra 320(6), 2624–2628 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sambale, B.: On the projective height zero conjecture. arXiv:1801.04272

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsCity, University of LondonLondonUK

Personalised recommendations