Archiv der Mathematik

, Volume 112, Issue 1, pp 13–18 | Cite as

Automorphism groups of dessins d’enfants

  • Rubén A. HidalgoEmail author


Recently, Gareth Jones observed that every finite group G can be realized as the group of automorphisms of some dessin d’enfant \({{\mathcal {D}}}\). In this paper, complementing Gareth’s result, we prove that for every possible action of G as a group of orientation-preserving homeomorphisms on a closed orientable surface of genus \(g \ge 2\), there is a dessin d’enfant \({{\mathcal {D}}}\) admitting G as its group of automorphisms and realizing the given topological action. In particular, this asserts that the strong symmetric genus of G is also the minimum genus action for it to act as the group of automorphisms of a dessin d’enfant of genus at least two.


Riemann surfaces Dessins d’enfants Automorphisms 

Mathematics Subject Classification

Primary 30F40 11G32 14H57 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author is very grateful to Gareth Jones for discussions about his preprint [6], which motivated this work, and to Ernesto Girondo and Gabino González-Diez for the many discussions about dessins d’enfants. Also, the author would like to thank the referee for the valuable corrections/suggestions and by pointing out Remark 1.


  1. 1.
    Girondo, E., González-Diez, G.: Introduction to Compact Riemann Surfaces and Dessins d’Enfants. London Mathematical Society Student Texts 79, Cambridge University Press, Cambridge (2012)Google Scholar
  2. 2.
    Greenberg, L.: Conformal transformations of Riemann surfaces. Am. J. Math. 82, 749–760 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Greenberg, L.: Maximal Fuchsian groups. Bull. Am. Math. Soc. 69, 569–573 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Grothendieck, A.: Esquisse d’un Programme (1984). In: Schneps, L., Lochak, P. (eds.) Geometric Galois Actions, 1. London Mathematical Society Lecture Notes Series 242, pp. 5–47, Cambridge University Press, Cambridge (1997)Google Scholar
  5. 5.
    Hurwitz, A.: Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41, 403–442 (1893)CrossRefzbMATHGoogle Scholar
  6. 6.
    Jones, G.A.: Automorphisms groups of maps, hypermaps and dessins. arXiv:1805.09764
  7. 7.
    Jones, G.A., Singerman, D.: Theory of maps on orientable surfaces. Proc. Lond. Math. Soc. 37, 273–307 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jones, G.A., Wolfart, J.: Dessins d’Enfants on Riemann Surfaces. Springer Monographs in Mathematics. Springer, Cham (2016)Google Scholar
  9. 9.
    Kerckhoff, S.: The Nielsen realization problem. Ann. of Math. (2) 117(2), 235–265 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications. Encyclopedia of Mathematical Sciences 141. Springer, Berlin (2004)Google Scholar
  11. 11.
    May, C.L., Zimmerman, J.: There is a group of every strong symmetric genus. Bull. Lond. Math. Soc. 35, 433–439 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nag, S.: The Complex Analytic Theory of Teichmüller Spaces. Wiley, New York (1988)zbMATHGoogle Scholar
  13. 13.
    Winkelmann, J.: Countable groups as automorphism groups. Doc. Math. 7, 413–417 (2002)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Matemática y EstadísticaUniversidad de La FronteraTemucoChile

Personalised recommendations