Archiv der Mathematik

, Volume 112, Issue 1, pp 27–32 | Cite as

On conciseness of some commutator words

  • Costantino Delizia
  • Pavel Shumyatsky
  • Antonio Tortora
  • Maria TotaEmail author


We prove that a commutator of two non-commutator words is a concise word.


Concise word Verbal subgroup Commutator word. 

Mathematics Subject Classification

Primary 20F10 Secondary 20E45 20F24. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdollahi, A., Russo, F.: On a problem of P. Hall for Engel words. Arch. Math. (Basel) 97(5), 407–412 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Acciarri, C., Shumyatsky, P.: On words that are concise in residually finite groups. J. Pure Appl. Algebra 218(1), 130–134 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brazil, S., Krasilnikov, A., Shumyatsky, P.: Groups with bounded verbal conjugacy classes. J. Group Theory 9(1), 127–137 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Delizia, C., Shumyatsky, P., Tortora, A.: On groups with finite conjugacy classes in a verbal subgroup. Bull. Aust. Math. Soc. 96(3), 429–437 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Detomi, E., Morigi, M., Shumyatsky, P.: Words of Engel type are concise in residually finite groups. arXiv:1711.04866v2 [math.GR]
  6. 6.
    Fernández-Alcober, G .A., Morigi, M.: Outer commutator words are uniformly concise. J. Lond. Math. Soc. (2) 82(3), 581–595 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fernández-Alcober, G .A., Morigi, M., Traustason, G.: A note on conciseness of Engel words. Commun. Algebra 40(7), 2570–2576 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fernández-Alcober, G .A., Shumyatsky, P.: On bounded conciseness of words in residually finite groups. J. Algebra 500, 19–29 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Guralnick, R., Shumyatsky, P.: On rational and concise words. J. Algebra 429, 213–217 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ivanov, S .V.: P. Hall’s conjecture on the finiteness of verbal subgroups. Soviet Math. (Iz. VUZ) 33(6), 59–70 (1989)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Olshanskiĭ, A.Yu.: Geometry of Defining Relations in Groups. Kluwer Academic Publishers Group, Dordrecht (1991)Google Scholar
  12. 12.
    Robinson, D.J.S.: Finiteness Conditions and Generalized Soluble Groups, Part 1 and Part 2. Springer, New York (1972)CrossRefzbMATHGoogle Scholar
  13. 13.
    Turner-Smith, R .F.: Marginal subgroup properties for outer commutator words. Proc. Lond. Math. Soc. (3) 14, 321–341 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wilson, J.C.R.: On outer–commutator words. Can. J. Math. 26, 608–620 (1974)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di SalernoFiscianoItaly
  2. 2.Department of MathematicsUniversity of BrasiliaBrasíliaBrazil

Personalised recommendations