Advertisement

Archiv der Mathematik

, Volume 111, Issue 1, pp 85–99 | Cite as

Sharp geometric condition for null-controllability of the heat equation on \(\mathbb {R}^d\) and consistent estimates on the control cost

  • Michela Egidi
  • Ivan VeselićEmail author
Article

Abstract

In this note we study the control problem for the heat equation on \(\mathbb {R}^d\), \(d\ge 1\), with control set \(\omega \subset \mathbb {R}^d\). We provide a necessary and sufficient condition (called \((\gamma , a)\)-thickness) on \(\omega \) such that the heat equation is null-controllable in any positive time. We give an estimate of the control cost with explicit dependency on the characteristic geometric parameters of the control set. Finally, we derive a control cost estimate for the heat equation on cubes with periodic, Dirichlet, or Neumann boundary conditions, where the control sets are again assumed to be thick. We show that the control cost estimate is consistent with the \(\mathbb {R}^d\) case.

Keywords

Control theory Heat equation Observability Spectral inequality Control cost Thick sets 

Mathematics Subject Classification

35Q93 93Bxx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Apraiz, L. Escauriaza, G. Wang, and C. Zhang, Observability inequalities and measurable sets, J. Eur. Math. Soc. (JEMS) 16 (2014), 2433–2475.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    K. Beauchard and K. Pravda-Starov, Null-controllability of hypoelliptic quadratic differential equations, J. Éc. Polytech. Math. 5 (2018), 1–43.MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007.Google Scholar
  4. 4.
    L. Escauriaza, S. Montaner, and C. Zhang, Observation from measurable sets for parabolic analytic evolutions and applications, J. Math. Pures Appl. (9) 104 (2015), 837–867.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    M. Egidi and I. Veselić, Scale-free unique continuation estimate and Logvinenko-Sereda theorem on the torus, arXiv:1609.07020v2.
  6. 6.
    V. È. Kacnel’son, Equivalent norms in spaces of entire functions, Mat. Sb. (N.S.) 92 (1973), 34–54.MathSciNetGoogle Scholar
  7. 7.
    O. Kovrijkine, Some estimates of Fourier transforms, ProQuest LLC, Ann. Arbor, MI, 2000. Thesis (Ph.D.)–California Institute of Technology.Google Scholar
  8. 8.
    O. Kovrijkine, Some results related to the Logvinenko-Sereda theorem, Proc. Amer. Math. Soc. 129 (2001), 3037–3047.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    J. Le Rousseau and I. Moyano, Null-controllability of the Kolmogorov equation in the whole phase space, J. Differential Equations 260 (2016), 3193–3233.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    V. N. Logvinenko and Ju. F. Sereda, Equivalent norms in spaces of entire functions of exponential type, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 20 (1974), 102–111, 175.MathSciNetzbMATHGoogle Scholar
  11. 11.
    I. Nakić, M. Täufer, M. Tautenhahn, and I. Veselić, Scale-free unique continuation principle for spectral projectors, eigenvalue-lifting and Wegner estimates for random Schrödinger operators, Anal. PDE 11 (2018), 1049–1081.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    I. Nakić, M. Täufer, M. Tautenhahn, and I. Veselić, Unique continuation and lifting of spectral band edges of Schrödinger operators on unbounded domains (With an Appendix by Albrecht Seelmann), arXiv:1804.07816.
  13. 13.
    B. P. Panejah, Some theorems of Paley-Wiener type, Soviet Math. Dokl. 2 (1961), 533–536.MathSciNetGoogle Scholar
  14. 14.
    B. P. Panejah, On some problems in harmonic analysis, Dokl. Akad. Nauk SSSR 142 (1962), 1026–1029.MathSciNetGoogle Scholar
  15. 15.
    G. Wang, M. Wang, C. Zhang, and Y. Zhang, Observable set, observability, interpolation inequality and spectral inequality for the heat equation in \({\mathbb{R}}^n\), arXiv:1711.04279.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technische Universität DortmundDortmundGermany

Personalised recommendations