Advertisement

Archiv der Mathematik

, Volume 111, Issue 1, pp 23–32 | Cite as

Linear systems over localizations of rings

  • Sebastian PosurEmail author
Article

Abstract

We describe a method for solving linear systems over the localization of a commutative ring R at a multiplicatively closed subset S that works under the following hypotheses: the ring R is coherent, i.e., we can compute finite generating sets of row syzygies of matrices over R, and there is an algorithm that decides for any given finitely generated ideal \(I \subseteq R\) the existence of an element r in \(S \cap I\) and in the affirmative case computes r as a concrete linear combination of the generators of I.

Keywords

Computable ring Coherent strongly discrete ring Linear system Localization 

Mathematics Subject Classification

Primary 13B30 Secondary 13P20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1994.CrossRefzbMATHGoogle Scholar
  2. 2.
    M. Barakat and M. Lange-Hegermann, An axiomatic setup for algorithmic homological algebra and an alternative approach to localization, J. Algebra Appl. 10 (2011), 269–293.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M. Barakat and M. Lange-Hegermann, Gabriel morphisms and the computability of Serre quotients with applications to coherent sheaves, arXiv:1409.2028.
  4. 4.
    T. Coquand, A. Mörtberg, and V. Siles, Coherent and strongly discrete rings in type theory, In: Certified Programs and Proofs, C. Hawblitzel and D. Miller. (eds.), 273–288, Lecture Notes in Computer Science, vol 7679. Springer, Berlin, Heidelberg, 2012.Google Scholar
  5. 5.
    G. Greuel and G. Pfister, A Singular Introduction to Commutative Algebra, With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann, Springer-Verlag, 2002.Google Scholar
  6. 6.
    S. Gutsche, Ø. Skartsæterhagen, and S. Posur, The CAP project – Categories, Algorithms, Programming, (http://homalg-project.github.io/CAP_project), 2013–2017.
  7. 7.
    J. Hoffmann and V. Levandovskyy, A constructive approach to arithmetics in Ore localizations, In: ISSAC’17—Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation, 197–204, ACM, New York, 2017.Google Scholar
  8. 8.
    homalg project authors, The homalg project – Algorithmic Homological Algebra, (http://homalg-project.github.io), 2003–2017.
  9. 9.
    T. Mora, La queste del Saint \({{\rm Gr}}_{a} (AL)\): a computational approach to local algebra, Discrete Appl. Math. 33 (1991), 161–190, Applied algebra, algebraic algorithms, and error-correcting codes (Toulouse, 1989).Google Scholar
  10. 10.
    S. Posur, A constructive approach to Freyd categories, arXiv:1712.03492.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of SiegenSiegenGermany

Personalised recommendations