Archiv der Mathematik

, Volume 110, Issue 5, pp 515–521 | Cite as

Almost maximal volume entropy

  • Viktor Schroeder
  • Hemangi Shah


We prove the existence of manifolds with almost maximal volume entropy which are not hyperbolic.


Volume entropy Stability Hyperbolic Fundamental group Cusp closing 

Mathematics Subject Classification

53C25 53C20 53C24 


  1. 1.
    R. Adler, A. Konheim, and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    W. Ballmann and M. P. Wojtkowski, An estimate for the measure-theoretic entropy of geodesic flows, Ergodic Theory Dynam. Systems 9 (1989), 271–279.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    L. Chen, X. Rong, and S. Xu, Quantitative space form rigidity under lower Ricci curvature bound, arXiv:1604.06986 [math.DG].
  4. 4.
    A. Freire and R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points, Invent. Math. 69 (1982), 375–392.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    W. Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), 679–688.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    W. Goodwyn, Comparing topological entropy with measure entropy, Amer. J. Math. 94 (1972), 336–388.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. N. Kolmogorov, New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces, (Russian) Dokl. Akad. Nauk SSSR 119 (1958), 861–864.Google Scholar
  8. 8.
    F. Ledrappier and X. Wang, An integral formula for the volume entropy with applications to rigidity, J. Differential Geom. 85 (2010), 461–477.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. Manning, Topological entropy for geodesic flows, Ann. of Math. (2) 110 (1979), 567–573.Google Scholar
  10. 10.
    D. B. McReynolds, A. Reid, and M. Stover, Collisions at infinity in hyperbolic manifolds, Math Proc. Soc. 155 (2013), 459–463.MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. Preissmann, Quelques propriétés globales des espaces de Riemann, Comm. Math. Helv. 15 (1942–43), 175–216.Google Scholar
  12. 12.
    Ja. G. Sinai, On the concept of entropy of a dynamical system, (Russian) Dokl. Akad. Nauk SSSR 124 (1959), 768–771.Google Scholar
  13. 13.
    V. Schroeder, A cusp closing theorem, Proc. Amer. Math. Soc. 106 (1989), 797–802.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für MathematikUniversität ZürichZurichSwitzerland
  2. 2.Harish Chandra Research Institute, HBNIAllahabadIndia

Personalised recommendations