Advertisement

Powers of t-spread principal Borel ideals

  • Claudia Andrei
  • Viviana EneEmail author
  • Bahareh Lajmiri
Article
  • 8 Downloads

Abstract

We prove that t-spread principal Borel ideals are sequentially Cohen–Macaulay and study their powers. We show that these ideals possess the strong persistence property and compute their limit depth.

Keywords

t-Spread principal Borel ideals Persistence property Limit depth Sequentially Cohen–Macaulay ideals 

Mathematics Subject Classification

Primary 13D02 Secondary 13H10 05E40 13C14 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank the anonymous referee for the valuable comments.

References

  1. 1.
    Ene, V., Herzog, J.: Gröbner Bases in Commutative Algebra. Grad. Stud. Math. 130. American Mathematical Society, Providence, RI (2012)zbMATHGoogle Scholar
  2. 2.
    Ene, V., Herzog, J., Asloob Qureshi, A.: \(t\)-Spread strongly stable ideals. arXiv:1805.02368
  3. 3.
    Ene, V., Olteanu, O.: Powers of lexsegment ideals with linear resolution. Ill. J. Math. 56(2), 533–549 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Herzog, J., Asloob Qureshi, A.: Persistence and stability properties of powers of ideals. J. Pure Appl. Algebra 219, 530–542 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Herzog, J., Hibi, T.: Monomial Ideals. Grad. Texts in Math. 260. Springer, London (2010)zbMATHGoogle Scholar
  6. 6.
    Herzog, J., Hibi, T., Vladoiu, M.: Ideals of fiber type and polymatroids. Osaka J. Math. 42, 807–829 (2005)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Hochster, M.: Rings of invariants of tori, Cohen–Macaulay rings generated by monomials, and polytopes. Ann. Math. 96, 228–235 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sturmfels, B.: Gröbner Bases and Convex Polytopes. American Mathematical Society, Providence, RI (1995)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  2. 2.Faculty of Mathematics and Computer ScienceOvidius UniversityConstantaRomania
  3. 3.Department of Mathematics and Computer ScienceAmirkabir University of TechnologyTehranIran

Personalised recommendations